
1

An Overview of Implicit Parallelization
Russell Harmon

Fig. 1. Programmer Effort1

Abstract

In this paper we present the concept of implicit paral-
lelism, a method by which a single-threaded program may
be converted into a multi-threaded program either through
(i) a compiler extension (ii) a recompiler (iii) run-time
dynamic recompilation (iv) hardware supported parallelism.
This enables an application to take advantage of multi-core
or multi-processor systems without intricate knowledge of
how parallel programming works.

I. INTRODUCTION

Parallelization is the act of taking a series of operations
and modifying them in such a way as to enable them to
be run in parallel as opposed to sequentially. Although this
can provide large performance benefits, with the existing
methods of parallelization it can be an error prone and
difficult process. A programmer must understand the intricate
details of synchronization, synchronization primitives and the
non-deterministic nature of a scheduler. There has been a
great deal of research into hiding these complexities from
the programmer, but due to (i) the overhead introduced by
parallelization (ii) the complexity (iii) the tendency for error
of parallelization, few efforts have seen success. Of the
few that have seen success, one such effort is with genetic
algorithms [1].

The design of the common microprocessor has been
moving to that of multiple cores since the late nineties [3].
As processors become more and more capable of performing
many tasks in parallel, software developers will need to begin
to write software which takes advantage of that.

II. EXISTING APPROACHES

In this paper, we try to explore the possibility of converting
single-threaded applications into multi-threaded applications

1Figure taken from Hwu et al. [3]

automatically. In the practice of this, five general problems
are encountered:

• Different programs are parallelizable to different ex-
tents.

• In programs which are parallelizable, work must be
done to ensure that the overhead introduced by thread-
ing does not overcome the speedup inherent to paral-
lelization [2].

• In languages with lazy evaluation, it is difficult to
determine which computational tasks will perform the
actual work needed [2].

• Even if the source code for a piece of work appears
pure, its compiled implementation may contain side
effects (e.g. to perform memoisation) [2].

• IO or updates to mutable storage requires additional
handling.

Figure 1 (b) depicts the approach of implicit parallelization
with respect to the other possible approaches of paralleliza-
tion.

Parallelization is not a new concept. There exist a number
of approaches which are already successful in the world of
software development. The closest current approach to fully
automatic parallelization is the approach taken by projects
like OpenMP [3] and CUDA [4]. The approaches taken fall
into three different classifications shown in Figure 1 (a, c, d).
Figure 1 (a) depicts the average multi-threaded application
where the user uses synchronization techniques explicitly,
Figure 1 (c) depicts domain-specific programming APIs like
CUDA, and Figure 1 (d) depicts hinted programming APIs
like OpenMP.

The traditional way of parallelizing an application (fig. 1
(a)) is with explicit use of synchronization primitives. An
application programmer explicitly uses system calls to start
and stop threads, and uses primitives such as semaphores
to ensure that no two threads can access the same shared
memory at the same time.

There has been research into a number of possible methods
of automatically parallelizing an application. This paper
only discusses a subset of the methods currently being
investigated.

The approach taken by OpenMP (fig. 1 (d)) and CUDA
(fig. 1 (c)) is that of employing a domain specific API.
This API hides all the complexity of parallelization from
the programmer by doing one or both of the following:

• Providing high level function calls for performing com-
plex tasks such as rendering a complex image on screen,
the innerworkings of which is parallelized (CUDA).

• Providing annotations by which the API is able to
modify the annotated code to be parallelized (OpenMP).



2

Fig. 2. MPEG-4/H.263 Encoder Motion Estimation Example and Depen-
dence Visualization.3

A. CUDA

CUDA is Nvidia’s programming API for executing code
on their GPUs. This API provides highly parallelized func-
tion calls that are designed to be called by a single thread
to perform a task. Silberstein, Schuster, Geiger, Patney, and
Owens [4] talk about using CUDA to calculate sum-products.
This is distinctly different than hinted approaches such as
OpenMP in that the actual loop code is not written by the
developer.

B. OpenMP

OpenMP is a C based API designed so that you provide
hints via the pragma preprocessor macro to tell OpenMP to
parallelize the loop that follows. This is distinctly different
than functional approaches such as CUDA in that the actual
loop code is still written by the developer.

III. PARALLELIZABLE ALGORITHMS

There is one change that application developers will need
to make. When developing an algorithm, they must consider
how parallelizable it is. Figure 2 depicts a parallelizable
and non-parallelizable implementation of MPEG-4/H.263
encoder motion estimation. (b) is a parallelizable implemen-
tation, (a) is not.

In Figure 2 (a), the motion estimator obtains a guess from
the previous macroblock in horizontal scan order [3]. This
technique is inherently non-parallelizable due to the fact that

3Figure taken from Hwu et al. [3]

the previous macroblock in the chain must be completely
processed before the next one can be begun.

Figure 2 (b) shows a different implementation of the adap-
tive motion estimation algorithm that obtains guess vectors
from the corresponding macroblock in the previous frame,
rather than the previous macroblock in the current frame.
The advantage of this is that the previous frame is already
entirely processed, and so the data which is a prerequisite to
this macroblock being processed is already available.

IV. PARALLELIZING AN APPLICATION

Most approaches to parallelization require two major
changes to existing software architecture. These changes are
(i) compiler extensions and (ii) hardware support. There are
a few approaches which do not require hardware support [2].

A. Compiler

In order to perform this parallelization the compiler must
be extended to support speculative multithreading. Harris
and Singh [2] have done research on this topic. They have
implemented a Haskell compiler called the Glasgow Haskell
Compiler (GHC). The GHC parallelizes by operating on
thunks which are blocks of code allocated by optimized
Haskell programs. It attempts to predict which thunks are
likely to be good thunks for parallel execution. The ideal
thunks are thunks which will be needed by the program and
will run long enough that the performance gain will outweigh
the overhead introduced.

B. Hardware

Many approaches also require hardware extensions in
order to execute their parallelized code. von Praun, Ceze, and
Caşcaval [5] are working on one such approach. Their paper
”Implicit Parallelism with Ordered Transactions” presents
Implicit Parallelism with Ordered Transactions (IPOT). IPOT
is an extension of sequential or explicitly parallel program-
ming models which introduces basic hints to the compiler to
say that you want this section of code to be parallelized4.

IPOT also requires extensions to the hardware to support
speculative multithreading. The requirements as stated in [5]
are as follows:
spawn/commit/squash: Support for creating, committing

and squashing speculative tasks. This includes maintain-
ing the correct ordering of speculative tasks as defined
by the original sequential program.

conflict detection: Support for the detection of dependence
violations. Conflict detection relies on the ordering
information and the memory access history of the tasks
to determine if there is a violation and which tasks need
to be squashed. If a speculative task reads a location that
is subsequently written by an ’older’ task, a conflict
is flagged and the ’younger’ task is squashed. This

4Notice the distinction of this from OpenMP where you have to explicitly
say not only that you want a section of code parallelized, but also how to
parallelize it.



3

enforcement of dependences guarantees that the original
sequential semantics of the program are met.

data versioning: Support for buffering speculative data un-
til commit time. Writes performed speculatively should
not be made visible until the task commits. Also related
to data versioning is the forwarding of speculative data.
Our execution model assumes that speculative versions
of data can be provided to more speculative tasks.

V. RELATED WORK

There are a number of proposed implementations with
their own distinct strengths and weaknesses Zhong, Lieber-
man, and Mahlke [6] have proposed one such implementa-
tion which makes use of more fine grained parallelization
techniques.

VI. CONCLUSION

Implicit parallelization in general is still a very immature
field and there is a great deal of available topics that have yet
to be researched. Before implicit parallelization can make it
into your every day application, it needs to develop to a point
where there are definite performance improvements. Also,
researchers need to find an efficient way to decide whether
or not to parallelize a particular parallelizable piece of code,
dependent on whether or not it will provide a speed increase
or be dominated by the overhead introduced.

REFERENCES

[1] Alberto Bertoni and Marco Dorigo. Implicit parallelism
in genetic algorithms. Artif. Intell., 61(2):307–314, 1993.
ISSN 0004-3702. doi: http://dx.doi.org/10.1016/0004-
3702(93)90071-I.

[2] Tim Harris and Satnam Singh. Feedback
directed implicit parallelism. SIGPLAN Not.,
42(9):251–264, 2007. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1291220.1291192.

[3] Wen-mei Hwu, Shane Ryoo, Sain-Zee Ueng, John H.
Kelm, Isaac Gelado, Sam S. Stone, Robert E. Kidd,
Sara S. Baghsorkhi, Aqeel A. Mahesri, Stephanie C.
Tsao, Nacho Navarro, Steve S. Lumetta, Matthew I.
Frank, and Sanjay J. Patel. Implicitly parallel program-
ming models for thousand-core microprocessors. In
DAC ’07: Proceedings of the 44th annual conference
on Design automation, pages 754–759, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-627-1. doi:
http://doi.acm.org/10.1145/1278480.1278669.

[4] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul
Patney, and John D. Owens. Efficient computation of
sum-products on gpus through software-managed cache.
In ICS ’08: Proceedings of the 22nd annual international
conference on Supercomputing, pages 309–318, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-158-3.
doi: http://doi.acm.org/10.1145/1375527.1375572.

[5] Christoph von Praun, Luis Ceze, and Calin Caşcaval.
Implicit parallelism with ordered transactions. In

PPoPP ’07: Proceedings of the 12th ACM SIG-
PLAN symposium on Principles and practice of par-
allel programming, pages 79–89, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-602-8. doi:
http://doi.acm.org/10.1145/1229428.1229443.

[6] Hongtao Zhong, Steven A. Lieberman, and Scott A.
Mahlke. Extending multicore architectures to exploit
hybrid parallelism in single-thread applications. In
HPCA ’07: Proceedings of the 2007 IEEE 13th In-
ternational Symposium on High Performance Computer
Architecture, pages 25–36, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 1-4244-0804-0. doi:
http://dx.doi.org/10.1109/HPCA.2007.346182.


