
Introspection via Self Debugging

Russell Harmon

reh5586@cs.rit.edu

Rochester Institute of Technology

Computer Science

December 12, 2013

reh5586@cs.rit.edu

1 Introduction

The omnipresent support for introspection in modern programming languages indicates the usefulness of the

tool. [4, 5, 19, 21] Unfortunately, C, which is one of the most pervasive programming languages and the

foundation of nearly every modern operating system, does not support introspection.

By leveraging an existing debugger, an API entitled Ruminate brings introspection to the programming

language C. Debuggers have long had access to the type information which is needed for introspection. On

most UNIX platforms, this is accomplished by the debugger reading any debugging symbols which may be

present in the target binary, and inspecting the state of the target program. These debugging symbols are not

present by default and the compiler must be instructed to add the symbols at compile time. These techniques

are leveraged to gain the information which is needed to create an introspection API and building on that,

an API which can convert arbitrary types to and from JSON.

2 Motivation

One of the motivating factors for any language introducing introspection as a feature is the following use

case:

You are tasked with changing the save game format of a popular 1980s style terminal based

game from a binary format composed of writing the structs which compose the game state to

disk to a more flexible JSON format. After investigation, you discover that in order to do this,

you can use the Jansson [17] C library to produce JSON. In order to do so, you invoke variants

of the json_object_set function as given by the following prototype:

int json_object_set(

json_t *object,

const char *key,

json_t *value

);

You observe that json_object_set takes as parameters the name and value of the field to be

written necessitating the writing of a separate json_object_set call for every field of every

aggregate type. After considering the literally thousands of fields across the nearly three hundred

structs in the game you give up in frustration.

If a programmer were able to introspect types in C, they could write a generalized JSON conversion

function which could determine the name of every aggregate type and aggregate member procedurally thereby

1

significantly shortening the amount of code needed. A programmer could also use an introspective library for

creation of platform independent binary structure representations for use in network communication. Clearly,

it is a significant convenience to developers to be able to write code which is able to introspect upon data in

a meta-programming style.

3 Introspection in Current Programming Languages

Introspection is found in many of the programming languages commonly used today including Java [19],

Ruby [4], Python [21], Perl [5] and a limited form of introspection in C++ [29]. The various approaches to

introspection di�er in implementation details; some receiving introspection as a direct consequence of the way

they implement objects while some provide it as part of the standard library. Despite this, they all provide

approximately the same set of features. It is by these features that introspection can be defined, rather than

the details of how the features are implemented.

Introspection implementations generally provide several di�erent forms of introspection. A common form

of introspection provided is type introspection. Specifically, a program leveraging type introspection is able

to inspect the types of identifiers or values used in the program. Another form of introspection is function

introspection. This form of introspection allows programs to retrieve information about functions which

is not part of the type system, such as the function’s name or argument’s names. Finally, a third form of

introspection is stack introspection. This allows a program to retrieve a list of stack frames at a given point

in a program’s execution, commonly referred to as a stacktrace or backtrace.

Existing attempts to add introspection to C or C++ frequently require a separate description of the object

to be implemented which is generated using a separate parser [23], a complementary metadata object [2], or

require specific code to be written that describes the type. All of these introspection implementations have

the limitation that objects which come from external libraries cannot be introspected. Ruminate has neither

this library boundary limitation nor requires external compile-time tools or hand written object descriptions

in order to operate. Instead, Ruminate requires only that the library or executable to introspect contain

debugging symbols.

4 Debugging in C

There already exist a number of tools for interactive debugging of C programs. Some of the more well known

ones include GDB [9], WinDBG, Visual Studio’s debugger and LLDB [25]. Traditionally, these debuggers

have been used interactively via the command line where more recently debuggers such as the one embedded

2

within Visual Studio integrate into an IDE.

An understanding of debugging in general, and about LLDB specifically are crucial to the understanding

of this document, so some time will be spent explaining debugging.

Conceptually, a debugger is composed of two major components, a symbol parser and a process controller.

Among other types of symbols in a binary, Linux usually uses DWARF [6] debugging symbols. These

debugging symbols are intended for a debugger to parse and informs the debugger about some information

which is not available otherwise from inspection of the compiled binary. This information includes the source

file name(s), line number to compiled instruction mappings and type information. Interactive debugging

using a debugger is possible without debugging symbols, but di�cult. The other major piece of a debugger

is the ability to control another process. This is necessary in order for the debugger to inspect or modify a

debugee’s runtime state, set break or watchpoints and intercept signals. In order to accomplish this, specific

support must exist in the kernel which is hosting the process to be controlled. Across the various modern

platforms, there exists several di�erent implementations enabling one process to control another. On Linux,

the API for process control is ptrace(2) [20].

An important aspect of the type information which is available to a debugger is that this information

is almost entirely static. For instance, during an interactive debugging session when printing a variable the

debugger knows only the type of the variable being displayed, rather than the type of the data itself. This is

in stark contrast with other introspective languages where the type information is carried with the data and

can be recovered without any additional context. An example of the result of this under LLDB is shown in

Fig. 1. Notice that even though the value of baz is the string "Hello World!", because the type of baz is

void *, LLDB is unable to deduce the type.

4.1 LLDB

LLDB [25] is a debugger built on the LLVM [27] framework. Designed to be used as a library, it vends a

public C++ API which is promised to be relatively stable, and has bindings to Python in which the LLDB

authors have written its unit test suite [24].

Figure 2 shows a simple debugging session using LLDB. In it, a test program is launched and the value

of a stack-local variable is printed. Take note that LLDB is aware that the type of foo.bar is char *. In

fact regardless of the language most debuggers make available to their users a non-strict subset of the type

information which is available to the programmer writing the original source file.

Under LLDB’s public API, a type is represented by an SBType [18]. In order to get an instance of

SBType, you can either retrieve the type by name, or retrieve the type of a variable by that variable’s name

3

Process 12066 stopped
* thread #1: tid = 0x1c03, 0x0000000100000f64 a.out‘main + 20 at a.c:3

frame #0: 0x0000000100000f64 a.out‘main + 20 at a.c:3
1 int main() {
2 void *baz = "Hello World!";

-> 3 }
(lldb) print baz
(void *) $0 = 0x0000000100000f66

Figure 1: Static Type Information in Debuggers

Current executable set to ’./a.out’ (x86_64).
(lldb) breakpoint set -n main
Breakpoint created: 1: name = ’main’, locations = 1
(lldb) run
Process 10103 launched: ’./a.out’ (x86_64)
Process 10103 stopped
* thread #1: tid = 0x1c03, 0x0000000100000f60 a.out‘main + 16 at a.c:6

frame #0: 0x0000000100000f60 a.out‘main + 16 at a.c:6
3 };
4 int main() {
5 struct foo foo;

-> 6 foo.bar = "Hello World!";
7 }

(lldb) next
Process 10103 stopped
* thread #1: tid = 0x1c03, 0x0000000100000f64 a.out‘main + 20 at a.c:7

frame #0: 0x0000000100000f64 a.out‘main + 20 at a.c:7
4 int main() {
5 struct foo foo;
6 foo.bar = "Hello World!";

-> 7 }
(lldb) print foo.bar
(char *) $0 = 0x0000000100000f66 "Hello World!"

Figure 2: Interactive Debugging with LLDB

4

with the debugee stopped at a breakpoint. Once that is accomplished, an SBType can give you much of the

static type information about that variable which exists in the target’s debugging symbols.

When an operation is performed on an SBType, LLDB lazily retrieves the type information needed to

service that operation. Building on clang [3], LLDB uses the debugging symbols to generate a partial clang

AST. This AST is then retained for future inspection of that type.

5 Related Work

A System for Runtime Type Introspection in C++ [2] discusses an approach to introspection for C++ whereby

metadata objects are created using macros which are expected to be called at the definition of the object

which is to be introspected.

The Seal C++ Reflection System [23] discusses an introspection system for C++ which uses a metadata

generation tool to create descriptor files which contain the information needed for introspection.

C++, along with all the other languages supported by Microsoft’s CLR can be reflected upon by leveraging

features exposed by the CLR. [22]

Reflection for C++ [16] uses an approach very similar to the one proposed here, but instead of using a

debugger to retrieve debugging information, it instead reads the debugging symbols directly. This limits the

API to only leveraging information that it can retrieve from the debugging symbols themselves, as opposed

to could be deduced dynamically. This limitation means that it does not support stack introspection. It also

only supports introspection of classes - no support for enums, unions, bit fields, global or static functions and

variables is available. It does however support a limited form of reflection wherein you can create instances of

reflected classes and call reflected method pointers. Reflection for C++ also supports optionally describing a

class explicitly in the class declaration using a series of macros provided by the library as an alternative to

debugging symbol based introspection.

Ego [7, 8] is similar to the Reflection for C++ project. It reads Stabs [28] symbols from a binary and allows

static type introspection using those symbols. Like Reflection for C++, because Ego does not dynamically

inspect the state of the program it does not support stack introspection, nor does it support retrieving the

type of arbitrary expressions. Ego is also further limited in that it does not support introspection of third

party libraries. Ego does however support retrieving information about the specific source or header files in

which code is defined, and supports a more fully featured API for enumerating the di�erent kinds of symbols

defined in a project than that found in Ruminate wherein a programmer can fully traverse the structure of

a specific symbol including the scope in which it is defined. Ego’s documentation does describe a feature

it calls "stack introspection," but this does not allow retrieval of a call stack. Instead, it allows retrieval of

5

RType

RAggregateType RArrayType RBuiltinType RPointerType RTypedefType

RFunctionType

Figure 3: RType inheritance graph

variables from the current stack frame using stack specific symbol representations.

GObject Introspection [11], a part of the Gnome [10] project allows for introspection of instances of a

GObject. These objects are plain C structs which are initialized following a specific convention in order

to inform the GObject subsystem of the type of that object. GObject Introspection then uses that type

information which was initialized at runtime in order to provide introspective fatures. It is not possible to

introspect structs which were not initialized following the GObject initialization contract.

6 Ruminate

By leveraging LLDB, an API entitled Ruminate [14] was created which hides the complexities of self debugging

and enables a programmer to introspect a C program. The intent is not to express every detail of C’s type

system, but instead to expose a subset complete enough to be useful while small enough to be determinable

by a debugger. The DWARF standard for debugging symbols attempts to describe a common subset of

features found in many procedural languages and Ruminate only attempts to provide introspective features

which can be implemented leveraging DWARF debugging symbols.

After a call to ruminate_init, the programmer can call ruminate_get_type providing it with an expres-

sion. ruminate_get_type will return an instance of RType which represents the type of the expression passed.

The programmer can also retrieve an instance of a RType with a call to ruminate_get_types_by_name

passing in a string which will return a list of types which have that name. The name of a function, if extant,

is not a part of its type and therefore is not available from an RType. A function’s name can be retrieved

by address with a call to ruminate_get_function_name. Section 10 documents the use of these and other

Ruminate functions.

There are only a few methods defined on RType itself. Most of the functionality of introspection is found

6

in the subclasses of RType. Figure 3 shows the inheritance hierarchy of RType. An instance of RType can be

safely cast to the child type indicated by a call to r_type_id. The type retrieved may itself have sub types,

for which there exists analogous functions to the r_type_id function, and the type retrieved may be further

cast to the corresponding child type.

A simple example of the use of Ruminate can be seen in Fig. 4a wherein a struct is introspected. In this

example, ruminate_get_type is called to introspect the struct bar. The print_data function then receives

the resulting RType and prints its name, then for every member of foo, it prints the member name and

recursively calls itself passing into the recursive invocation the member’s type. The typedef string_t is then

encountered and is dealt with specially as a string. Because the type system of C does not have a specific

string type, it is impossible to determine procedurally whether any given char * is a string.1 Finally the

builtin int is printed. The output of this program is shown in Fig. 4b.

Since Ruminate is built on a debugger, it can also provide the programmer with stack introspection. A

call to ruminate_backtrace will return a RFrameList representing all the stack frames in the call stack

which resulted in the call to ruminate_backtrace. Shown in Fig. 5a, a simple abort_with_stacktrace

function which calls abort(3) [1] after printing a full stack trace has been written to demonstrate the use of

stack introspection. It’s output is shown in Fig. 5b

Leveraging Ruminate, a library built for the conversion of C data structures into JSON [26] was created.

An example of the use of this library is shown in Fig. 6. In it, the json_serialize function generates a

json_t by inspecting the RType and associated value passed into it. The string member variable s of MyStruct

is handled by registering a custom serializer for that type via a call to json_state_add_serializer. Unions

and array pointers are not shown in this example, and can only be converted to JSON using custom serializers.

This library has two output modes, a simple non-invertable mode and a more verbose invertable mode. These

two output modes are shown in Fig. 6b and Fig. 6c respectively. The invertable mode’s output can be

converted from JSON back to its original type with a call to json_deserialize.

Ruminate also supports introspecting third party code. Fig. 7 shows the C standard library’s FILE *stdout

converted to JSON using Ruminate. Declarations found in a public header file make their way into the debug

symbols of the file which includes that header file, making those declarations introspectable. Additionally,

private types can be introspected if the library which contains that type has debugging symbols.

Building on this, a reference counted typed memory allocator was written. This memory allocator allows

the creation of values which carry their type. After a call to one of r_mem_malloc, r_mem_malloc_sized,

r_mem_calloc or r_mem_calloc_sized, a pointer to heap allocated memory is returned which carries with

it the type of that pointer. The type of that memory can be retrieved with a call to r_mem_type. The fact
1
See Section 8 for further discussion on why strings are special cased.

7

#include <ruminate.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

typedef char *string_t;

struct foo {
string_t str;
int i;

};

void print_data(RType *type, const void *data) {
switch(r_type_id(type, NULL)) {

case R_TYPE_TYPEDEF:
if(strcmp(r_string_bytes(r_type_name(type, NULL)), "string_t") == 0)

printf("(string_t) \"%s\"\n", *((const string_t *) data));
break;

case R_TYPE_BUILTIN:
switch(r_builtin_type_id((RBuiltinType *) type, NULL)) {

case R_BUILTIN_TYPE_INT:
printf("(int) %d\n", *((const int *) data));
break;

}
break;

case R_TYPE_AGGREGATE: {
RAggregateType *agg = (RAggregateType *) type;
if(r_aggregate_type_id(agg, NULL) == R_AGGREGATE_TYPE_STRUCT) {

printf("(%s) {\n", r_string_bytes(r_type_name(type, NULL)));
for(size_t i = 0; i < r_aggregate_type_nmembers(agg, NULL); i++) {

RAggregateMember *memb = r_aggregate_type_member_at(agg, i, NULL);
printf("\t.%s = ", r_string_bytes(r_aggregate_member_name(memb, NULL)));
RTypeMember *tmemb = (RTypeMember *) memb;
off_t offset = r_type_member_offset(tmemb, NULL);
print_data(r_type_member_type(tmemb, NULL), data + offset);

}
printf("}\n");

}
break;

}
}

}

int main(int argc, char *argv[]) {
(void) argc;
ruminate_init(argv[0], NULL);
struct foo bar = {

.str = "Hello World!",

.i = 6666
};
print_data(ruminate_get_type(bar, NULL), &bar);

}

(a) Introspective code
(foo) {

.str = (string_t) "Hello World!"

.i = (int) 6666
}

(b) Output from introspective code
Figure 4: Introspection using Ruminate

8

#include <stdlib.h>

#include <stddef.h>

#include <stdio.h>

#include <stdint.h>

#include <ruminate.h>

void abort_with_backtrace(const char *message) {
RFrameList *frames = ruminate_backtrace(NULL);

fprintf(stderr, "abort(): %s\n", message == NULL ? "" : message);
size_t frames_len = r_frame_list_size(frames, NULL);
for(size_t i = 0; i < frames_len; i++) {

RFrame *frame = r_frame_list_at(frames, i, NULL);
RString *fname = r_frame_function_name(frame, NULL);
RString *mname = r_frame_module_name(frame, NULL);
RString *cuname = r_frame_compile_unit_name(frame, NULL);
uint32_t line = r_frame_line(frame, NULL);
fprintf(

stderr,
"\tat %s(%s, %s:%d)\n",
r_string_bytes(fname),
r_string_bytes(mname),
r_string_bytes(cuname),
line

);
r_string_unref(cuname);
r_string_unref(mname);
r_string_unref(fname);

}

r_frame_list_unref(frames);
abort();

}

void bar(int i) {
if(i < 2) {

bar(i + 1);
} else {

abort_with_backtrace("Hello World!");
}

}

void foo() {
bar(0);

}

int main(int argc, char *argv[]) {
ruminate_init(argv[0], NULL);
foo();

}

(a) Introspective code
abort(): Hello World!

at ruminate_hit_breakpoint(libruminate.so, ruminate.cpp:49)
at ruminate_backtrace(libruminate.so, ruminate.cpp:257)
at abort_with_backtrace(backtrace.exe, util.c:22)
at bar(backtrace.exe, backtrace.c:11)
at bar(backtrace.exe, backtrace.c:9)
at bar(backtrace.exe, backtrace.c:9)
at foo(backtrace.exe, backtrace.c:16)
at main(backtrace.exe, backtrace.c:23)
at __libc_start_main(libc.so.6, :0)

(b) Output from introspective code
Figure 5: Stack traces using Ruminate

9

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <glib.h>

#include <ruminate.h>

#include <jansson.h>

#include <ruminate-jansson.h>

typedef char *string;
struct MyStruct {

int i; string s; int *p;
union { char b; void *v; } *u;
enum MyEnum { MY_ENUM_VALUE_1, MY_ENUM_VALUE_2 } e;
char a[3];

};
static void *deserialize_string(JsonDeserializerArgs args, void *data, GError **error) {

const char *str = json_string_value(args.value);
size_t str_len = strlen(str) + 1;
char **ret = r_mem_malloc_fn(args.type, NULL);
*ret = r_mem_malloc_sized(char *, str_len, NULL);
memcpy(*ret, str, str_len);
return ret;

}
static json_t *serialize_string(JsonSerializerArgs args, void *data, GError **error) {

return json_string(*((char **) args.value));
}
static JsonHook string_hook = { .serializer = serialize_string, .deserializer = deserialize_string };
int main(int argc, char *argv[]) {

ruminate_init(argv[0], NULL);
int ipt = 2;
struct MyStruct foo = { .i = 1, .u = NULL, .s = "hello world!", .e = MY_ENUM_VALUE_2,

.p = &ipt, .a = { 1, 2, 3 } };
JsonState *st = json_state_new();
json_state_add_hook(st, g_quark_from_static_string("string"), &string_hook);
json_state_set_flags(st, JSON_FLAG_INVERTABLE);
json_t *serialized = json_serialize(st, ruminate_get_type(foo, NULL), &foo, NULL);
json_dumpf(serialized, stdout, 0);
printf("\n");
struct MyStruct *_foo = json_deserialize(st, serialized, NULL);
printf("struct MyStruct {");
printf(" .i = %d,", _foo->i);
printf(" .u = %p,", _foo->u);
printf(" .s = \"%s\",", _foo->s);
printf(" .e = %d,", _foo->e);
printf(" .p = %p (%d),", _foo->p, *_foo->p);
printf(" .a = [%d, %d, %d]", _foo->a[0], _foo->a[1], _foo->a[2]);
printf(" };\n");
r_mem_unref(_foo->s), r_mem_unref(_foo->p), r_mem_unref(_foo);

}

(a) JSON Library Use
{"s": "hello world!", "i": 1, "p": 2, "e": 1, "a": [1, 2, 3]}

(b) Non-invertable JSON output
{"value":

{"s": "hello world!",
"i": 1,
"p": 2,
"e": 1,
"a": [1, 2, 3]},

"type": "MyStruct"}
struct MyStruct { .i = 1, .s = "hello world!", .e = 1,

.p = 0x15aedc8 (2), .a = [1, 2, 3] };

(c) Invertable JSON output
Figure 6: JSON Library Example

10

{
"__pad1":null,
"_IO_read_base":72,
"_shortbuf":[0],
"_IO_backup_base":null,
"_vtable_offset":0,
"_flags":-72537468,
"_IO_read_ptr":72,
"_IO_write_base":72,
"_fileno":1,
"_IO_buf_base":72,
"_chain":{

"__pad1":null,
"_IO_read_base":null,
"_shortbuf":[0],
"_IO_backup_base":null,
"_vtable_offset":0,
"_flags":-72540024,
"_IO_read_ptr":null,
"_IO_write_base":null,
"_fileno":0,
"_IO_buf_base":null,
"_chain":null,
"_IO_write_ptr":null,
"_IO_read_end":null,
"_IO_save_end":null,
"__pad3":null,
"_IO_write_end":null,
"_offset":-1,
"_old_offset":-1,
"_IO_save_base":null,
"_flags2":0,
"_IO_buf_end":null,
"_markers":null,
"_cur_column":0,
"__pad4":null,
"__pad5":0,
"_mode":0,
"_unused2":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

},
"_IO_write_ptr":"",
"_IO_read_end":72,
"_IO_save_end":null,
"__pad3":null,
"_IO_write_end":72,
"_offset":-1,
"_old_offset":-1,
"_IO_save_base":null,
"_flags2":0,
"_IO_buf_end":"",
"_markers":null,
"_cur_column":0,
"__pad4":null,
"__pad5":0,
"_mode":-1,
"_unused2":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

}

Figure 7: stdout converted to JSON

11

#include <ruminate.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[]) {
(void) argc;

ruminate_init(argv[0], NULL);

const char *src_str = "Hello World!";
size_t src_str_len = strlen(src_str) + 1;
void *str = r_mem_malloc_sized(char *, src_str_len, NULL);
memcpy(str, src_str, src_str_len);

RType *str_type = r_mem_type(str);
RString *str_type_name = r_type_name(str_type, NULL);

printf("(%s) \"%s\"\n", r_string_bytes(str_type_name), str);

r_string_unref(str_type_name);
r_type_unref(str_type);
r_mem_unref(str);

}

(a) Typed Value Use
(char *) "Hello World!"

(b) Typed Value Output
Figure 8: Typed Values

that the type of memory allocated using this allocator is carried with the value itself means that unlike any

other type of value in C, the real type of e.x. a void * can be determined. Figure 8a shows an example of

the use of this library to create a typed string. The program creates the string, prints to standard out its

value and the name of its type via a call to r_mem_type and then exits. The output of this program is shown

in Fig. 8b.

7 Implementation

Ruminate is architected as two major components, the primary application, hereafter referred to as the

debugee, and a debugger control process. When initialized, Ruminate spawns a debugger control process

tasked with controlling LLDB. This control process then attaches to the debugee and proceeds to wait for

instructions over RPC from the debugee. This design was chosen because LLDB uses ptrace on Linux to

control its debugee, and ptrace does not support controlling the calling process.

When ruminate_init is invoked, the debugger control process is started and an RPC connection is

12

char a[sizeof((*((int (*)[4]) NULL))[0])];
__typeof__(&a) ap = &a;
(int (*)[4]) ap

Figure 9: Array Introspection of an int [4]

negotiated between the debugger control process and the debugee. The debugger control process then attaches

the debugger to the debugee and sets a breakpoint on the internal function ruminate_hit_breakpoint.

When ruminate_get_type is later invoked, an asynchronous RPC call is made to the debugger control

process which instructs LLDB to retrieve type information about the variable which is being introspected.

At the same time, ruminate_hit_breakpoint is called which stops the debugee and allows the debugger to

locate the variable. LLDB accomplishes this by reading the debugging symbols in the binary and constructing

an SBType [18] object to represent the type. Due to this, the type information available from LLDB and

therefore available by Ruminate is limited to the type information found in the debugging symbols and any

other information that can be inferred by inspecting the running program itself. The SBType constructed

is then wrapped in an object which implements the RPC contract for a type. A proxy to this object is

then returned to the debugee which further wraps this proxy in a RType which is finally returned to the

programmer. Most calls to interrogate the returned RType are initially forwarded via RPC to the SBType

held by the debugger control process, and then cached in the RType before being returned.

Measures have been taken to minimize the overhead involved in this form of introspection. The result of

nearly all methods performed on a type is cached within the RType, so subsequent calls for that information

will not need to perform RPC calls to the debugger control process. Strings are also wrapped in an RString

type which is a read-only reference counted container for char * strings. All methods which return strings

return an RString which is also cached internally.

Unlike every other type and despite the presence of relevant information in the debugging symbols, LLDB

does not allow the programmer to retrieve information about arrays from an SBType. Only the value backed

SBValue can retrieve this information. This provides a challenge since there may not be a value available

to inspect when an array is introspected as an RType is not bound to the value which may have been used

to generate it and the value of an array may have gone out of scope by the time it is introspected. The

solution to this is to dynamically generate an array of a size large enough to hold one element of the array

member type and use that as the value to inspect. This is accomplished by using a feature of LLDB which

allows expression evaluation within the debugee. A C expression is generated which creates such an array

and evaluates that expression in the context of the debugee, then retrieves an SBValue representing the array

created and inspects that. For an array type int [4], the expression evaluated in order to generate the array

is shown in Fig. 9.

13

Typed values as returned by the typed memory allocation routines are implemented by padding the start

of the memory to be allocated so it is large enough to store a pointer to the RType representing its type,

its reference count and its size. The pointer returned to the programmer is actually o�set into the object

allocated so that the pointer returned can be used as bare memory.

8 Limitations

This style of introspection is more limited than the classic style of introspection whereby an object carries its

own type information. Instead, the type of a value must be specified by the type of its variable or by name.

As discussed in Section 4.1 very little type information can be determined at runtime. The result of this is

that a call to ruminate_get_type on a variable whose type is void * will return an RType which represents

a void * rather than the real type of the data.

Although not strictly a limitation, many programmers will likely want to introspect strings as such, rather

than as the char * type. Unfortunately, since there is no di�erence in types between a C string and a pointer

to one or more chars, Ruminate is unable to determine the di�erence between the two. The example code

shown in Fig. 4a works around this issue by creating a typedef of char * to string_t. When interactively

working with a debugger, it is assumed that a char * type points at a string which results in accessing

arbitrary, sometimes uninitialized memory when that assumption is invalid.

There are two distinct kinds of arrays referred to by the C standard [15]. The first is the array type and

the second is the array object. An array object is a contiguous block of memory representing one or more

instances of some element type. Contrast this with the array type in that a pointer to an array object with

element type t has type t * and is still said to be an array. An array type however with element type t has

type t []. C provides for type coercion from array type to pointer type under most circumstances, and the

array index operator [] rather than operating on array types instead operates on pointer types. This allows

a programmer to use arrays and pointers nearly interchangeably.1 This is troublesome for a programmer

introspecting a pointer as a pointer type makes no distinction between array objects and non-array objects.

Following with the design of C, Ruminate makes no di�erentiation between pointers to array objects and

pointers to non array objects. It is the programmer’s responsibility to deduce what kind of object is pointed

to. In the JSON library built using Ruminate, pointer types are assumed to point at a single non-array object,

which the programmer can change by installing custom serializers to handle array objects including strings.

LLDB does not support same-process debugging. This is due to that fact that in Linux, ptrace is used

to control the debugee, and ptrace does not support tracing the calling process. This limitation necessitated
1
Except in some applications of multi-dimensional arrays

14

the creation of the debugger control process. The IPC overhead added by the calls to ptrace is significant.

The program shown in Fig. 4a takes approximately 1.6 seconds to run.

LLDB does not support debugging only a single thread of a multi-threaded application. This means that

whenever the debugee must be stopped (which is a minimum of once per call to ruminate_get_type), all

threads are stopped.

As discussed in Section 7, LLDB has only value backed representations for arrays. This means that in

order to get type information about any array, the process must be stopped. Stopping the debugee is a

significant cause of overhead due to the fact that not only is a context switch of the introspecting thread

triggered, all threads in the debugee are stopped.

DWARF requires the names of function arguments be included in its internal type information. LLDB

does not provide a means to access this information from its API. Therefore, introspection of the names of

function arguments does not currently work. This limitation may be lifted in the future.

Ruminate can only currently be run using a patched LLDB. Several features which needed to be added

to LLDB are not currently available in a stock LLDB installation. Specifically, an SBType did not support

retrieving information about enums, for which support was added [12]. Also, LLDB did not support controlling

its signal disposition thereby controlling whether LLDB stops and/or suppresses signals when the debugee is

set to receive one, for which support was also added [13].

Ruminate has a rather severe failure case. Since the debugger control process is controlled by the debugee,

if the debugee causes LLDB to stop it (e.x. via delivery of a signal) and the debugger control process does

not properly handle the stop, the two processes may enter a dead lock state wherein both processes are

waiting for each other. Signals are now handled correctly after support was added for controlling LLDB’s

signal disposition. The only currently known cause of this state is a race condition during deinitialization.

The DWARF debugging symbols provide both line number information and type information. Correct

operation of Ruminate is severely hampered in cases where both are missing. The only type of introspection

still available in the absence of all debugging symbols is stack introspection, and source file and line number

information will not be available from the stack frames thus returned. For all other features of introspection,

Ruminate requires that debugging symbols be present in those modules which are to be introspected. Ruminate

does not require that all modules linked in an executable possess debugging information.

9 Future Work

The original plans for the future of Ruminate was to support other debuggers (e.x. gdb) including those on

other platforms (e.x. windbg on Windows). The overhead added by the RPC is however quite significant

15

and an alternative approach should be considered.

One possible approach is to modify LLDB to support same process debugging. This would likely not fit

well with the design of LLDB as it would be di�cult to implement some features which LLDB relies on, such

as breakpoints.

Another approach is to modify LLDB to expose its internals as libraries and leverage those libraries in

order to perform introspection without the need for the debugger control process. The functionality that

these libraries would need to expose includes symbol parsing including DWARF debugging symbols, call

stack traversal and expression evaluation.

Another direction this project could take is to support additional sources of type information. Some

compilers support emitting their AST in binary form during compilation. If embedded inside the emitted

binary, that AST could be used for complete type information. This would not however provide runtime

information such as stack introspection and so some additional work to implement the features of a debugger

would still be necessary.

LLDB integrates with clang and LLVM in order to provide support for "expression evaluation." This

means that C code can be given to LLDB as a string, and it will compile, link and execute that code in the

debugee. This could potentially be leveraged in order to add "eval" functionality to Ruminate whereby a

program could invoke the expression evaluation subsystem of LLVM itself.

16

Bibliography

[1] abort(3) - cause abnormal process termination. Linux Programmer’s Manual. 2013. url: http:

//man7.org/linux/man-pages/man3/abort.3.html (visited on 11/12/2013).

[2] Maximilien de Bayser and Renato Cerqueira. “A System for Runtime Type Introspection in C++”.

In: Proceedings of the 16th Brazilian conference on Programming Languages. SBLP’12. Natal, Brazil:

Springer-Verlag, 2012, pp. 102–116. isbn: 978-3-642-33181-7. url: http://dx.doi.org/10.1007/

978-3-642-33182-4_9.

[3] clang: a C language family frontend for LLVM. url: http://clang.llvm.org/.

[4] Class: Object (Ruby 1.9.3). url: http://ruby-doc.org/core-1.9.3/Object.html#method-i-

instance_variables (visited on 2/19/2013).

[5] Class::MOP::Class. url: http://search.cpan.org/dist/Class-MOP/lib/Class/MOP/Class.pm

(visited on 2/19/2013).

[6] DWARF Standards Committee. The DWARF Debugging Standard. url: http://dwarfstd.org/

(visited on 10/20/2012).

[7] Ludovic Courtès. “Systèmes tolérant les fautes à base de support d’exécution réflexifs Capture en ligne

de l’état d’applications”. MA thesis. Université de Franche-Comté, 2003. url: http://www.fdn.fr/

~lcourtes/software/ego/laas-dea.pdf (visited on 11/12/2013).

[8] Ludovic Courtès. The Ego Reference Manual. 2004. url: http://www.fdn.fr/~lcourtes/software/

ego/ego-manual.html (visited on 11/12/2013).

[9] GDB: The GNU Project Debugger. url: https : / / www . gnu . org / software / gdb/ (visited on

2/19/2013).

[10] GNOME. url: http://www.gnome.org/ (visited on 11/12/2013).

[11] GObject Introspection. url: http://wiki.gnome.org/GObjectIntrospection (visited on 11/12/2013).

17

http://man7.org/linux/man-pages/man3/abort.3.html
http://man7.org/linux/man-pages/man3/abort.3.html
http://dx.doi.org/10.1007/978-3-642-33182-4_9
http://dx.doi.org/10.1007/978-3-642-33182-4_9
http://clang.llvm.org/
http://ruby-doc.org/core-1.9.3/Object.html#method-i-instance_variables
http://ruby-doc.org/core-1.9.3/Object.html#method-i-instance_variables
http://search.cpan.org/dist/Class-MOP/lib/Class/MOP/Class.pm
http://dwarfstd.org/
http://www.fdn.fr/~lcourtes/software/ego/laas-dea.pdf
http://www.fdn.fr/~lcourtes/software/ego/laas-dea.pdf
http://www.fdn.fr/~lcourtes/software/ego/ego-manual.html
http://www.fdn.fr/~lcourtes/software/ego/ego-manual.html
https://www.gnu.org/software/gdb/
http://www.gnome.org/
http://wiki.gnome.org/GObjectIntrospection

[12] Russell Harmon. Enumerating the members of an enum. Submitted to the lldb-dev mailing list. Oct. 26,

2013. url: http://lists.cs.uiuc.edu/pipermail/lldb-dev/2013-October/002626.html (visited

on 11/12/2013).

[13] Russell Harmon. Ignoring Signals via the API. Submitted to the lldb-dev mailing list. July 27, 2013.

url: http://lists.cs.uiuc.edu/pipermail/lldb-dev/2013-July/002108.html (visited on

11/26/2013).

[14] Russell Harmon. Ruminate. Type Introspection for C. 2013. url: http://rus.har.mn/ruminate/

(visited on 11/12/2013).

[15] JTC1/SC22/WG14. Programming languages — C. ISO n1570. International Organization for Stan-

dardization, 2011.

[16] K. Knizhnik. Reflection for C++. url: http://www.garret.ru/cppreflection/docs/reflect.

html (visited on 2/19/2013).

[17] Petri Lehtinen. Jansson. url: http://www.digip.org/jansson/ (visited on 2/7/2013).

[18] LLDB python API. Class SBType. July 19, 2013. url: http://lldb.llvm.org/python_reference/

lldb.SBType-class.html (visited on 2013-11-12).

[19] Package java.lang.reflect. url: http://docs.oracle.com/javase/7/docs/api/java/lang/

reflect/package-summary.html (visited on 2/19/2013).

[20] ptrace(2) - process trace. Linux Programmer’s Manual. 2013. url: http://man7.org/linux/man-

pages/man2/ptrace.2.html (visited on 11/12/2013).

[21] Python 2.7.3 » Documentation » The Python Standard Library. Built-in Functions. url: http:

//docs.python.org/2/library/functions.html#dir (visited on 2/19/2013).

[22] Reflection in C++. url: http://msdn.microsoft.com/en-us/library/y0114hz2(v=vs.80).aspx

(visited on 2/19/2013).

[23] S. Roiser and P. Mato. “The Seal C++ Reflection System”. In: Proceedings of CHEP 2004. CHEP04.

(Sept. 27–Oct. 1, 2004). CERN. Interlaken, Switzerland, 2004. url: http://indico.cern.ch/

getFile.py/access?contribId=222&resId=0&materialId=paper&confId=0 (visited on 2/19/2013).

[24] LLDB Team. LLDB python API. url: http : / / lldb . llvm . org / python _ reference / lldb -

module.html.

[25] LLVM Team. The LLDB Debugger. url: http://lldb.llvm.org/ (visited on 10/11/2012).

18

http://lists.cs.uiuc.edu/pipermail/lldb-dev/2013-October/002626.html
http://lists.cs.uiuc.edu/pipermail/lldb-dev/2013-July/002108.html
http://rus.har.mn/ruminate/
http://www.garret.ru/cppreflection/docs/reflect.html
http://www.garret.ru/cppreflection/docs/reflect.html
http://www.digip.org/jansson/
http://lldb.llvm.org/python_reference/lldb.SBType-class.html
http://lldb.llvm.org/python_reference/lldb.SBType-class.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://man7.org/linux/man-pages/man2/ptrace.2.html
http://docs.python.org/2/library/functions.html#dir
http://docs.python.org/2/library/functions.html#dir
http://msdn.microsoft.com/en-us/library/y0114hz2(v=vs.80).aspx
http://indico.cern.ch/getFile.py/access?contribId=222&resId=0&materialId=paper&confId=0
http://indico.cern.ch/getFile.py/access?contribId=222&resId=0&materialId=paper&confId=0
http://lldb.llvm.org/python_reference/lldb-module.html
http://lldb.llvm.org/python_reference/lldb-module.html
http://lldb.llvm.org/

[26] The JSON Data Interchange Format. ECMA-404 (RFC 4627). First Edition. Rue du Rhône Genève,

Switzerland: ECMA International, Oct. 2013. url: http://www.ecma- international.org/

publications/files/ECMA-ST/ECMA-404.pdf (visited on 11/12/2013).

[27] The LLVM Compiler Infrastructure. url: http://llvm.org/ (visited on 11/12/2013).

[28] The "stabs" representation of debugging information. url: http://www.sourceware.org/gdb/

download/onlinedocs/stabs.html (visited on 18/12/2013).

[29] “Working Draft, Standard for Programming Language C++”. In: ISO/IEC 14882:2011 (2011), 99,

§5.2.8.

19

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://llvm.org/
http://www.sourceware.org/gdb/download/onlinedocs/stabs.html
http://www.sourceware.org/gdb/download/onlinedocs/stabs.html

Ruminate

Generated by Doxygen 1.8.4

Thu Dec 12 2013 13:15:24

10 Appendix

20

ii CONTENTS

Contents

1 Main Page 1

2 Todo List 1

3 Hierarchical Index 2

3.1 Class Hierarchy . 2

4 Class Index 2

4.1 Class List . 2

5 File Index 3

5.1 File List . 3

6 Class Documentation 4

6.1 RAggregateMember Struct Reference . 4

6.1.1 Detailed Description . 4

6.1.2 Member Function Documentation . 4

6.2 RAggregateType Struct Reference . 5

6.2.1 Detailed Description . 6

6.2.2 Member Function Documentation . 6

6.3 RArrayType Struct Reference . 7

6.3.1 Detailed Description . 7

6.3.2 Member Function Documentation . 8

6.4 RBuiltinType Struct Reference . 8

6.4.1 Detailed Description . 9

6.4.2 Member Function Documentation . 9

6.5 REnumMember Struct Reference . 10

6.5.1 Detailed Description . 10

6.5.2 Member Function Documentation . 10

6.6 RFrame Struct Reference . 11

6.6.1 Detailed Description . 11

6.6.2 Member Function Documentation . 12

6.7 RFrameList Struct Reference . 13

6.7.1 Detailed Description . 14

6.7.2 Member Function Documentation . 14

6.8 RFunctionType Struct Reference . 15

6.8.1 Detailed Description . 15

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

CONTENTS iii

6.8.2 Member Function Documentation . 15

6.9 RPointerType Struct Reference . 16

6.9.1 Detailed Description . 16

6.9.2 Member Function Documentation . 16

6.10 RString Struct Reference . 17

6.10.1 Detailed Description . 17

6.10.2 Member Function Documentation . 17

6.11 RType Struct Reference . 18

6.11.1 Detailed Description . 19

6.11.2 Member Function Documentation . 19

6.12 RTypedefType Struct Reference . 20

6.12.1 Detailed Description . 21

6.12.2 Member Function Documentation . 21

6.13 RTypeMember Struct Reference . 21

6.13.1 Detailed Description . 22

6.13.2 Member Function Documentation . 22

7 File Documentation 23

7.1 ruminate/aggregate_member.h File Reference . 23

7.1.1 Detailed Description . 24

7.1.2 Enumeration Type Documentation . 24

7.2 ruminate/aggregate_type.h File Reference . 24

7.2.1 Detailed Description . 24

7.2.2 Enumeration Type Documentation . 25

7.3 ruminate/builtin_type.h File Reference . 25

7.3.1 Detailed Description . 25

7.3.2 Enumeration Type Documentation . 26

7.4 ruminate/errors.h File Reference . 26

7.4.1 Detailed Description . 27

7.4.2 Macro Definition Documentation . 27

7.4.3 Enumeration Type Documentation . 27

7.5 ruminate/memory.h File Reference . 27

7.5.1 Detailed Description . 28

7.5.2 Macro Definition Documentation . 28

7.5.3 Function Documentation . 29

7.6 ruminate/ruminate.h File Reference . 32

7.6.1 Detailed Description . 32

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

1 Main Page 1

7.6.2 Macro Definition Documentation . 32

7.6.3 Function Documentation . 33

7.7 ruminate.h File Reference . 34

7.7.1 Detailed Description . 34

7.8 ruminate/type.h File Reference . 35

7.8.1 Detailed Description . 35

7.8.2 Enumeration Type Documentation . 35

7.8.3 Function Documentation . 36

7.9 ruminate/type_member.h File Reference . 36

7.9.1 Detailed Description . 36

7.9.2 Enumeration Type Documentation . 36

Index 37

1 Main Page

Ruminate is an introspective library for C.

Usage

To start using it, see ruminate_get_type() in ruminate.h

Links

You can also get a lot of information about the project from my master’s degree project report, found here

2 Todo List

Member r_type_size (RType ⇤, GError ⇤⇤error)
Document this

Member RAggregateMember::r_aggregate_member_name (RAggregateMember ⇤member, GError ⇤⇤error)
Function argument names return "". I’m not sure it’s even possible to get these, so this feature might go away.

Member RTypedefType::r_typedef_type_canonical (RTypedefType ⇤, GError ⇤⇤error)
Be able to single step through non-canonical types of an RTypedefType.

Member ruminate_backtrace (GError ⇤⇤error)
This method should return a GPtrArray rather than a custom list implementation.

Member ruminate_get_type_by_variable_name (const char ⇤, GError ⇤⇤)
document

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

2 CONTENTS

3 Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

RFrame 11

RFrameList 13

RString 17

RType 18

RAggregateType 5

RFunctionType 15

RArrayType 7

RBuiltinType 8

RPointerType 16

RTypedefType 20

RTypeMember 21

RAggregateMember 4

REnumMember 10

4 Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

RAggregateMember
An opaque struct representing a aggregate member 4

RAggregateType
An opaque struct representing a aggregate type 5

RArrayType
An opaque struct representing an array type 7

RBuiltinType
An opaque struct representing a builtin type 8

REnumMember
An opaque struct representing an enum member 10

RFrame
An opaque struct representing a call stack frame 11

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

5 File Index 3

RFrameList
An opaque struct representing a call stack 13

RFunctionType
An opaque struct representing a function 15

RPointerType
An opaque struct representing a pointer to another type 16

RString
An opaque struct representing a string 17

RType
An opaque struct representing a type 18

RTypedefType
An opaque struct representing a typedef’ed type 20

RTypeMember
An opaque struct representing a type member 21

5 File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

ruminate.h
The only file you should need to include 34

ruminate/aggregate_member.h
Aggregate members 23

ruminate/aggregate_type.h
Aggregate types 24

ruminate/builtin_type.h
Built-in types 25

ruminate/errors.h
Error handling facilities 26

ruminate/memory.h
Typed reference counted memory allocator 27

ruminate/ruminate.h
Top-level and utility functions 32

ruminate/type.h
The top level of the ruminate type hierarchy 35

ruminate/type_member.h
Type members 36

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

4 CONTENTS

6 Class Documentation

6.1 RAggregateMember Struct Reference

An opaque struct representing a aggregate member.

Inheritance diagram for RAggregateMember:

RAggregateMember

REnumMember

RTypeMember

Public Member Functions

• RAggregateMemberId r_aggregate_member_id (RAggregateMember ⇤member, GError ⇤⇤error)

Get the real type identifier of this aggregate member.

• RString ⇤ r_aggregate_member_name (RAggregateMember ⇤member, GError ⇤⇤error)

Get the name of this aggregate member.

6.1.1 Detailed Description

An opaque struct representing a aggregate member.

See Also

RAggregateType

6.1.2 Member Function Documentation

6.1.2.1 RAggregateMemberId r_aggregate_member_id (RAggregateMember ⇤ member, GError ⇤⇤ error)

Get the real type identifier of this aggregate member.

Returns

the real type of this aggregate member

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.2 RAggregateType Struct Reference 5

Parameters

in member the aggregate member to get the id of
out error see errors.h

6.1.2.2 RString ⇤ r_aggregate_member_name (RAggregateMember ⇤ member, GError ⇤⇤ error)

Get the name of this aggregate member.

Returns

a RString containing the name of this aggregate member

Todo Function argument names return "". I’m not sure it’s even possible to get these, so this feature might go away.

Parameters

in member the aggregate member to get the name of
in error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/aggregate_member.h

6.2 RAggregateType Struct Reference

An opaque struct representing a aggregate type.

Inheritance diagram for RAggregateType:

RAggregateType

RFunctionType

RType

Public Member Functions

• RAggregateTypeId r_aggregate_type_id (RAggregateType ⇤type, GError ⇤⇤error)

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6 CONTENTS

Get the aggregate type identifier of this aggregate type.

• size_t r_aggregate_type_nmembers (RAggregateType ⇤type, GError ⇤⇤error)
Get the number of members in this aggregate type.

• RAggregateMember ⇤ r_aggregate_type_member_at (RAggregateType ⇤type, size_t index, GError ⇤⇤error)
Get an aggregate’s member at a specified index.

• RAggregateMember ⇤ r_aggregate_type_member_by_name (RAggregateType ⇤type, const char ⇤name, GError
⇤⇤error)

Get an aggregate’s member by name.

6.2.1 Detailed Description

An opaque struct representing a aggregate type.

This aggregate type can be safely cast to it’s sub-type which can be determined by using r_aggregate_type_id()

6.2.2 Member Function Documentation

6.2.2.1 RAggregateTypeId r_aggregate_type_id (RAggregateType ⇤ type, GError ⇤⇤ error)

Get the aggregate type identifier of this aggregate type.

The RAggregateTypeId of this RAggregateType represents the child type of this RAggregateType, and can be safely
cast into that child type.

Returns

the child type of this aggregate type.

Parameters

in type the aggregate type to retrieve the id of
out error see errors.h

6.2.2.2 RAggregateMember ⇤ r_aggregate_type_member_at (RAggregateType ⇤ type, size_t index, GError ⇤⇤ error)

Get an aggregate’s member at a specified index.

Returns

a RAggregateMember representing the member of this aggregate at index index.

Parameters

in type the aggregate type to retrieve a member of
in index the index of the member
out error see errors.h

6.2.2.3 RAggregateMember ⇤ r_aggregate_type_member_by_name (RAggregateType ⇤ type, const char ⇤ name, GError
⇤⇤ error)

Get an aggregate’s member by name.

Returns

a RAggregateMember representing the member of this aggregate with name name.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.3 RArrayType Struct Reference 7

Parameters

in type the aggregate type to retrieve a member of
in name the name of the aggregate member
out error see errors.h

6.2.2.4 size_t r_aggregate_type_nmembers (RAggregateType ⇤ type, GError ⇤⇤ error)

Get the number of members in this aggregate type.

Returns

the number of members in this aggregate type.

Parameters

in type the type to get the number of members of
out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/aggregate_type.h

6.3 RArrayType Struct Reference

An opaque struct representing an array type.

Inheritance diagram for RArrayType:

RArrayType

RType

Public Member Functions

• size_t r_array_type_size (RArrayType ⇤type, GError ⇤⇤error)
Get the size of this array.

• RTypeMember ⇤ r_array_type_member_at (RArrayType ⇤type, size_t index, GError ⇤⇤error)
Get the type of a member of this array.

6.3.1 Detailed Description

An opaque struct representing an array type.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

8 CONTENTS

6.3.2 Member Function Documentation

6.3.2.1 RTypeMember ⇤ r_array_type_member_at (RArrayType ⇤ type, size_t index, GError ⇤⇤ error)

Get the type of a member of this array.

Returns

A RTypeMember representing the type of the argument at index index

Parameters

in type the type to get the member type of
in index the index in the array to get the member type of
out error see errors.h

6.3.2.2 size_t r_array_type_size (RArrayType ⇤ type, GError ⇤⇤ error)

Get the size of this array.

Returns

the size of the array

Parameters

in type the type to get the size of
out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/array_type.h

6.4 RBuiltinType Struct Reference

An opaque struct representing a builtin type.

Inheritance diagram for RBuiltinType:

RBuiltinType

RType

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.4 RBuiltinType Struct Reference 9

Public Member Functions

• RBuiltinTypeId r_builtin_type_id (RBuiltinType ⇤type, GError ⇤⇤error)

Get the builtin type identifier of this builtin type.

• bool r_builtin_type_is_signed (RBuiltinType ⇤type, GError ⇤⇤error)

Determine if this type is signed.

• bool r_builtin_type_is_unsigned (RBuiltinType ⇤type, GError ⇤⇤error)

Determine if this type is unsigned.

6.4.1 Detailed Description

An opaque struct representing a builtin type.

6.4.2 Member Function Documentation

6.4.2.1 RBuiltinTypeId r_builtin_type_id (RBuiltinType ⇤ type, GError ⇤⇤ error)

Get the builtin type identifier of this builtin type.

The RBuiltinTypeId of this RBuiltinType represents the real type of this builtin type.

Returns

the real type of this builtin type

Parameters

in type the builtin type to retrieve the id of
out error see errors.h

6.4.2.2 bool r_builtin_type_is_signed (RBuiltinType ⇤ type, GError ⇤⇤ error)

Determine if this type is signed.

Note that the char type can be neither signed nor unsigned.

Returns

whether or not this type is signed

Parameters

in type the type to determine the signedness of
out error see errors.h

6.4.2.3 bool r_builtin_type_is_unsigned (RBuiltinType ⇤ type, GError ⇤⇤ error)

Determine if this type is unsigned.

Note that the char type can be neither signed nor unsigned.

Returns

whether or not this type is unsigned

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

10 CONTENTS

Parameters

in type the type to determine the signedness of
out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/builtin_type.h

6.5 REnumMember Struct Reference

An opaque struct representing an enum member.

Inheritance diagram for REnumMember:

REnumMember

RAggregateMember

RTypeMember

Public Member Functions

• intmax_t r_enum_member_value_signed (REnumMember ⇤member, GError ⇤⇤error)

Get the signed value of this enum member.

• uintmax_t r_enum_member_value_unsigned (REnumMember ⇤member, GError ⇤⇤error)

Get the unsigned value of this enum member.

6.5.1 Detailed Description

An opaque struct representing an enum member.

6.5.2 Member Function Documentation

6.5.2.1 intmax_t r_enum_member_value_signed (REnumMember ⇤ member, GError ⇤⇤ error)

Get the signed value of this enum member.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.6 RFrame Struct Reference 11

Returns

the signed value of this enum member

Parameters

in member the enum member to get the value of
out error see errors.h

6.5.2.2 uintmax_t r_enum_member_value_unsigned (REnumMember ⇤ member, GError ⇤⇤ error)

Get the unsigned value of this enum member.

Returns

the unsigned value of this enum member

Parameters

in member the enum member to get the value of
out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/enum_member.h

6.6 RFrame Struct Reference

An opaque struct representing a call stack frame.

Public Member Functions

• void r_frame_ref (RFrame ⇤frame)

Increment the reference count of this RFrame.

• void r_frame_unref (RFrame ⇤frame)

Decrement the reference count of this RFrame.

• RString ⇤ r_frame_function_name (RFrame ⇤frame, GError ⇤⇤error)

Get the name of the function this RFrame represents.

• RString ⇤ r_frame_module_name (RFrame ⇤frame, GError ⇤⇤error)

Get the name of the module which contains this frame.

• RString ⇤ r_frame_compile_unit_name (RFrame ⇤frame, GError ⇤⇤error)

Get the name of the compile unit which contains this frame.

• RType ⇤ r_frame_function_type (RFrame ⇤frame, GError ⇤⇤error)

Get the type of this function.

• uintmax_t r_frame_line (RFrame ⇤frame, GError ⇤⇤error)

Get the line number that this frame is at.

6.6.1 Detailed Description

An opaque struct representing a call stack frame.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

12 CONTENTS

6.6.2 Member Function Documentation

6.6.2.1 RString ⇤ r_frame_compile_unit_name (RFrame ⇤ frame, GError ⇤⇤ error)

Get the name of the compile unit which contains this frame.

This is usually the name of the file which defined this function.

Returns

a RString containing the name of this compile unit.

Parameters

in frame the frame to get the compile unit name of
out error see errors.h

6.6.2.2 RString ⇤ r_frame_function_name (RFrame ⇤ frame, GError ⇤⇤ error)

Get the name of the function this RFrame represents.

Returns

a RString containing the name of this function.

Parameters

in frame the frame to get the name of
out error see errors.h

6.6.2.3 RType ⇤ r_frame_function_type (RFrame ⇤ frame, GError ⇤⇤ error)

Get the type of this function.

Returns

an RType representing the type of this function.

Parameters

in frame the frame to get the type of
out error see errors.h

6.6.2.4 uintmax_t r_frame_line (RFrame ⇤ frame, GError ⇤⇤ error)

Get the line number that this frame is at.

Returns

the line number that this frame is at

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.7 RFrameList Struct Reference 13

Parameters

in frame the frame to get the line number of
out error see errors.h

6.6.2.5 RString ⇤ r_frame_module_name (RFrame ⇤ frame, GError ⇤⇤ error)

Get the name of the module which contains this frame.

This is usually the name of the executable or library.

Returns

a RString containing the name of this module.

Parameters

in frame the frame to get the module name of
out error see errors.h

6.6.2.6 void r_frame_ref (RFrame ⇤ frame)

Increment the reference count of this RFrame.

Parameters

in frame the frame to increment the reference count of

6.6.2.7 void r_frame_unref (RFrame ⇤ frame)

Decrement the reference count of this RFrame.

The RFrame will be freed if it’s reference count drops to zero.

Parameters

in frame the frame to decrement the reference count of

The documentation for this struct was generated from the following file:

• ruminate/frame.h

6.7 RFrameList Struct Reference

An opaque struct representing a call stack.

Public Member Functions

• size_t r_frame_list_size (RFrameList ⇤list, GError ⇤⇤error)
Get the number of elements in this frame list.

• RFrame ⇤ r_frame_list_at (RFrameList ⇤list, size_t index, GError ⇤⇤error)
Get an RFrame from this RFrameList.

• void r_frame_list_ref (RFrameList ⇤list)
Increment the reference count on this RFrameList.

• void r_frame_list_unref (RFrameList ⇤list)
Decrement the reference count of this RFrameList.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

14 CONTENTS

6.7.1 Detailed Description

An opaque struct representing a call stack.

A call stack is a list of one or more RFrame instances.

See Also

RFrame

6.7.2 Member Function Documentation

6.7.2.1 RFrame ⇤ r_frame_list_at (RFrameList ⇤ list, size_t index, GError ⇤⇤ error)

Get an RFrame from this RFrameList.

Returns

the RFrame at index index

Parameters

in list the frame list to get an element from
in index the index of the RFrame to get
out error see errors.h

6.7.2.2 void r_frame_list_ref (RFrameList ⇤ list)

Increment the reference count on this RFrameList.

Parameters

in list the frame list to increment the reference count of

6.7.2.3 size_t r_frame_list_size (RFrameList ⇤ list, GError ⇤⇤ error)

Get the number of elements in this frame list.

Returns

the number of elements in this frame list.

Parameters

in list the frame list to get the size of
out error see errors.h

6.7.2.4 void r_frame_list_unref (RFrameList ⇤ list)

Decrement the reference count of this RFrameList.

The RFrameList will be freed if it’s reference count drops to zero.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.8 RFunctionType Struct Reference 15

Parameters

in list the frame list to decrement the reference count of

The documentation for this struct was generated from the following file:

• ruminate/frame.h

6.8 RFunctionType Struct Reference

An opaque struct representing a function.

Inheritance diagram for RFunctionType:

RFunctionType

RAggregateType

RType

Public Member Functions

• RType ⇤ r_function_type_return_type (RFunctionType ⇤type, GError ⇤⇤error)

Get the return type of this function.

6.8.1 Detailed Description

An opaque struct representing a function.

6.8.2 Member Function Documentation

6.8.2.1 RType ⇤ r_function_type_return_type (RFunctionType ⇤ type, GError ⇤⇤ error)

Get the return type of this function.

Returns

An RType representing the return type of this function.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

16 CONTENTS

Parameters

in type the function to get the return type of
out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/function_type.h

6.9 RPointerType Struct Reference

An opaque struct representing a pointer to another type.

Inheritance diagram for RPointerType:

RPointerType

RType

Public Member Functions

• RType ⇤ r_pointer_type_pointee (RPointerType ⇤type, GError ⇤⇤error)

Get the type that this RPointerType points to.

6.9.1 Detailed Description

An opaque struct representing a pointer to another type.

6.9.2 Member Function Documentation

6.9.2.1 RType ⇤ r_pointer_type_pointee (RPointerType ⇤ type, GError ⇤⇤ error)

Get the type that this RPointerType points to.

Returns

The type that this RPointerType points to.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.10 RString Struct Reference 17

Parameters

in type the type to dereference
out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/pointer_type.h

6.10 RString Struct Reference

An opaque struct representing a string.

Public Member Functions

• RString ⇤ r_string_ref (RString ⇤string)
Increase the reference count on this RString.

• void r_string_unref (RString ⇤string)
Decrease the reference count on this RString.

• const char ⇤ r_string_bytes (RString ⇤string)
Get the C-style string (array of characters) backing this RString.

• size_t r_string_length (RString ⇤string)
Get the length of this RString.

6.10.1 Detailed Description

An opaque struct representing a string.

An RString is a reference counted array of characters.

6.10.2 Member Function Documentation

6.10.2.1 const char ⇤ r_string_bytes (RString ⇤ string)

Get the C-style string (array of characters) backing this RString.

The behavior is undefined if this array is modified.

Returns

the array of characters backing this RString

Parameters

in string the string to get the array of characters of

6.10.2.2 size_t r_string_length (RString ⇤ string)

Get the length of this RString.

Returns

the length of this RString

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

18 CONTENTS

Parameters

in string the string to get the length of

6.10.2.3 RString ⇤ r_string_ref (RString ⇤ string)

Increase the reference count on this RString.

Returns

string

Parameters

in string the string to increase the reference count of

6.10.2.4 void r_string_unref (RString ⇤ string)

Decrease the reference count on this RString.

If the reference count of this RString drops to zero, the string will be freed.

Parameters

in string the string to decrease the reference count of

The documentation for this struct was generated from the following file:

• ruminate/string.h

6.11 RType Struct Reference

An opaque struct representing a type.

Inheritance diagram for RType:

RType

RAggregateType RArrayType RBuiltinType RPointerType RTypedefType

RFunctionType

Public Member Functions

• RTypeId r_type_id (RType ⇤type, GError ⇤⇤error)

Get the type identifier of this type.

• RString ⇤ r_type_name (RType ⇤type, GError ⇤⇤error)

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.11 RType Struct Reference 19

Get the name of this type.

• RType ⇤ r_type_ref (RType ⇤type)

Increase the reference count of this type.

• void r_type_unref (RType ⇤type)

Decrease the reference count of this.

• RType ⇤ r_type_pointer (RType ⇤type, GError ⇤⇤error)

Get an RType representing a pointer to this type.

6.11.1 Detailed Description

An opaque struct representing a type.

This type can be safely cast to it’s sub-type which can be determined using r_type_id().

6.11.2 Member Function Documentation

6.11.2.1 RTypeId r_type_id (RType ⇤ type, GError ⇤⇤ error)

Get the type identifier of this type.

The RTypeId of this RType represents the child type of this RType, and can be safely cast into that child type.

Returns

the child type of this type.

Parameters

in type the type to retrieve the type id of
out error see errors.h

6.11.2.2 RString ⇤ r_type_name (RType ⇤ type, GError ⇤⇤ error)

Get the name of this type.

Returns

an RString containing the name of this type.

Parameters

in type the type to retrieve the name of
out error see errors.h

6.11.2.3 RType ⇤ r_type_pointer (RType ⇤ type, GError ⇤⇤ error)

Get an RType representing a pointer to this type.

Returns

An RType representing a pointer to type.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

20 CONTENTS

Parameters

in type the type to get a pointer to
out error see errors.h

6.11.2.4 RType ⇤ r_type_ref (RType ⇤ type)

Increase the reference count of this type.

Returns

type

Parameters

in type the type to increase the reference count of

6.11.2.5 void r_type_unref (RType ⇤ type)

Decrease the reference count of this.

This RType will be freed if the reference count drops to zero.

Parameters

in type the type to decrease the reference count of

The documentation for this struct was generated from the following file:

• ruminate/type.h

6.12 RTypedefType Struct Reference

An opaque struct representing a typedef’ed type.

Inheritance diagram for RTypedefType:

RTypedefType

RType

Public Member Functions

• RType ⇤ r_typedef_type_canonical (RTypedefType ⇤, GError ⇤⇤error)

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

6.13 RTypeMember Struct Reference 21

Get the canonical type of this type.

6.12.1 Detailed Description

An opaque struct representing a typedef’ed type.

6.12.2 Member Function Documentation

6.12.2.1 RType ⇤ r_typedef_type_canonical (RTypedefType ⇤ , GError ⇤⇤ error)

Get the canonical type of this type.

A canonical type strips away all typedefs contained within this type.

For example with the following code,

typedef char

*

String;

typedef String

*

StringArray;

calling r_typedef_type_canonical() on a RTypedefType representing a StringArray will return an RType representing
char ⇤⇤.

Todo Be able to single step through non-canonical types of an RTypedefType.

Returns

An RType representing the canonical type of this RTypedefType.

Parameters

out error see errors.h

The documentation for this struct was generated from the following file:

• ruminate/typedef_type.h

6.13 RTypeMember Struct Reference

An opaque struct representing a type member.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

22 CONTENTS

Inheritance diagram for RTypeMember:

RTypeMember

RAggregateMember

REnumMember

Public Member Functions

• RTypeMemberId r_type_member_id (RTypeMember ⇤member, GError ⇤⇤error)

Get the type member id of this RTypeMember.

• RType ⇤ r_type_member_type (RTypeMember ⇤member, GError ⇤⇤error)

Get the type of this type member.

• ptrdiff_t r_type_member_offset (RTypeMember ⇤member, GError ⇤⇤error)

Get the offset of this type member into it’s container.

• RTypeMember ⇤ r_type_member_ref (RTypeMember ⇤member)

Increment the reference count of this RTypeMember.

• void r_type_member_unref (RTypeMember ⇤member)

Decrement the reference count of this RTypeMember.

6.13.1 Detailed Description

An opaque struct representing a type member.

6.13.2 Member Function Documentation

6.13.2.1 RTypeMemberId r_type_member_id (RTypeMember ⇤ member, GError ⇤⇤ error)

Get the type member id of this RTypeMember.

Parameters

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7 File Documentation 23

in member the type member to get the id of
out error see errors.h

6.13.2.2 ptrdiff_t r_type_member_offset (RTypeMember ⇤ member, GError ⇤⇤ error)

Get the offset of this type member into it’s container.

This is the number of bytes into this type member’s container (either an RArrayType, or an RAggregateType) that this
member is located.

See Also

RArrayType
RAggregateType

Parameters

in member the type member to get the offset of
out error see errors.h

6.13.2.3 RTypeMember ⇤ r_type_member_ref (RTypeMember ⇤ member)

Increment the reference count of this RTypeMember.

Parameters

in member the type member to increment the reference count of

6.13.2.4 RType ⇤ r_type_member_type (RTypeMember ⇤ member, GError ⇤⇤ error)

Get the type of this type member.

Parameters

in member the type member to get the type of
out error see errors.h

6.13.2.5 void r_type_member_unref (RTypeMember ⇤ member)

Decrement the reference count of this RTypeMember.

If the reference count reaches zero, this RTypeMember will be freed.

Parameters

in member the type member to decrement the reference count of

The documentation for this struct was generated from the following file:

• ruminate/type_member.h

7 File Documentation

7.1 ruminate/aggregate_member.h File Reference

Aggregate members.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

24 CONTENTS

Enumerations

• enum RAggregateMemberId {
R_AGGREGATE_MEMBER_BITFIELD,
R_AGGREGATE_MEMBER_ENUM,
R_AGGREGATE_MEMBER_OTHER }

An identifier denoting the real type of this RAggregateMember.

7.1.1 Detailed Description

Aggregate members. A RAggregateMember represents a member of an aggregate type.

See Also

RAggregateMember
RAggregateType

7.1.2 Enumeration Type Documentation

7.1.2.1 enum RAggregateMemberId

An identifier denoting the real type of this RAggregateMember.

This identifier can be retrieved using r_aggregate_member_id().

Enumerator

R_AGGREGATE_MEMBER_BITFIELD a bitfield

R_AGGREGATE_MEMBER_ENUM an instance of REnumMember
See Also

REnumMember

R_AGGREGATE_MEMBER_OTHER a "normal" type (non enum-member nor bitfield)

7.2 ruminate/aggregate_type.h File Reference

Aggregate types.

Enumerations

• enum RAggregateTypeId {
R_AGGREGATE_TYPE_STRUCT,
R_AGGREGATE_TYPE_UNION,
R_AGGREGATE_TYPE_ENUM,
R_AGGREGATE_TYPE_FUNCTION,
R_AGGREGATE_TYPE_UNKNOWN }

An identifier denoting the child type of this RAggregateType.

7.2.1 Detailed Description

Aggregate types. A RAggregateType represents an aggregate type (struct, union, enum or function)

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7.3 ruminate/builtin_type.h File Reference 25

See Also

RAggregateType

7.2.2 Enumeration Type Documentation

7.2.2.1 enum RAggregateTypeId

An identifier denoting the child type of this RAggregateType.

This identifier can be retrieved using r_aggregate_type_id().

Enumerator

R_AGGREGATE_TYPE_STRUCT a struct

R_AGGREGATE_TYPE_UNION a union

R_AGGREGATE_TYPE_ENUM an enum

R_AGGREGATE_TYPE_FUNCTION a function type

See Also

RFunctionType

R_AGGREGATE_TYPE_UNKNOWN an unknown type

7.3 ruminate/builtin_type.h File Reference

Built-in types.

Enumerations

• enum RBuiltinTypeId {
R_BUILTIN_TYPE_INT,
R_BUILTIN_TYPE_LONG,
R_BUILTIN_TYPE_DOUBLE,
R_BUILTIN_TYPE_SHORT,
R_BUILTIN_TYPE_CHAR,
R_BUILTIN_TYPE_VOID,
R_BUILTIN_TYPE_BOOL,
R_BUILTIN_TYPE_UNKNOWN }

An identifier denoting the real type of this RBuiltinType.

7.3.1 Detailed Description

Built-in types. A RBuintinType represents a built-in type (int, double, etc.)

See Also

RBuiltinType

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

26 CONTENTS

7.3.2 Enumeration Type Documentation

7.3.2.1 enum RBuiltinTypeId

An identifier denoting the real type of this RBuiltinType.

This identifier can be retrieved using r_builtin_type_id().

Enumerator

R_BUILTIN_TYPE_INT an int

R_BUILTIN_TYPE_LONG a long

R_BUILTIN_TYPE_DOUBLE a double

R_BUILTIN_TYPE_SHORT a short

R_BUILTIN_TYPE_CHAR a char

R_BUILTIN_TYPE_VOID the void type

R_BUILTIN_TYPE_BOOL a bool

R_BUILTIN_TYPE_UNKNOWN an unknown type

7.4 ruminate/errors.h File Reference

Error handling facilities.

Macros

• #define RUMINATE_ERROR

The error quark representing errors produced by this library.

• #define RUMINATE_ERRNO_ERROR

The error quark representing errors produced by the standard C library.

Enumerations

• enum RuminateError {
RUMINATE_ERROR_SB_INVALID,
RUMINATE_ERROR_LLDB_ERROR,
RUMINATE_ERROR_RANGE,
RUMINATE_ERROR_NO_PRIMITIVE_TYPE,
RUMINATE_ERROR_INVALID_TYPE,
RUMINATE_ERROR_INCOMPLETE_TYPE,
RUMINATE_ERROR_ICE,
RUMINATE_ERROR_STDLIB,
RUMINATE_ERROR_SHORT_READ,
RUMINATE_ERROR_NO_PRGNAME,
RUMINATE_ERROR_UNIMPLEMENTED,
RUMINATE_ERROR_UNSPEC }

The various errors produced by ruminate.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7.5 ruminate/memory.h File Reference 27

7.4.1 Detailed Description

Error handling facilities. Every function which takes as an argument a GError ⇤⇤ reports errors through this pointer.

In brief, pass NULL as the GError ⇤⇤ argument to functions or pass a pointer to a NULL GError ⇤ to recieve a
GError when an error occurs.

See Also

GError

7.4.2 Macro Definition Documentation

7.4.2.1 #define RUMINATE_ERRNO_ERROR

The error quark representing errors produced by the standard C library.

This quark will be placed in the domain field of a GError produced when an error occurrs.

See Also

GQuark

7.4.2.2 #define RUMINATE_ERROR

The error quark representing errors produced by this library.

This quark will be placed in the domain field of a GError produced when an error occurrs.

See Also

GQuark

7.4.3 Enumeration Type Documentation

7.4.3.1 enum RuminateError

The various errors produced by ruminate.

These will be placed in the code field of a GError produced when an error occurrs.

7.5 ruminate/memory.h File Reference

Typed reference counted memory allocator.

Macros

• #define r_mem_malloc(type, error)
Allocate typed memory.

• #define r_mem_malloc_sized(type, size, error)
Allocate typed memory with size.

• #define r_mem_calloc(type, nmemb, error)
Allocate zero’ed typed memory.

• #define r_mem_calloc_sized(type, size, nmemb, error)
Allocate zero’ed typed memory, with size.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

28 CONTENTS

Functions

• void ⇤ r_mem_malloc_fn (RType ⇤type, GError ⇤⇤error)

Allocate typed memory.

• void ⇤ r_mem_malloc_sized_fn (RType ⇤type, size_t size, GError ⇤⇤error)

Allocate typed memory with size.

• void ⇤ r_mem_calloc_fn (RType ⇤type, size_t nmemb, GError ⇤⇤error)

Allocate zero’ed typed memory.

• void ⇤ r_mem_calloc_sized_fn (RType ⇤type, size_t size, size_t nmemb, GError ⇤⇤error)

Allocate zero’ed typed memory, with size.

• size_t r_mem_size (void ⇤mem)

Retrieve the allocated size of typed memory.

• void ⇤ r_mem_ref (void ⇤mem)

Increment the reference count of typed memory.

• void r_mem_unref (void ⇤mem)

Decrease the reference count of typed memory.

• RType ⇤ r_mem_type (void ⇤mem)

Retrieve the type of typed memory.

7.5.1 Detailed Description

Typed reference counted memory allocator. These functions provide facilities for allocating dynamic memory which you
can retrieve the type of via a call to r_mem_type(). This allows you to retrieve the real type of e.x. a void ⇤.

This memory is also reference counted via calls to r_mem_ref() and r_mem_unref().

7.5.2 Macro Definition Documentation

7.5.2.1 #define r_mem_calloc(type, nmemb, error)

Allocate zero’ed typed memory.

This macro allocates enough memory for nmemb instances of type sized elements and sets the allocated memory to
zero.

Parameters

in type the type of the memory to allocate
in nmemb the number of type sized members to allocate.
out error see errors.h

Returns

a pointer to dynamically allocated memory

7.5.2.2 #define r_mem_calloc_sized(type, size, nmemb, error)

Allocate zero’ed typed memory, with size.

This macro allocates enough memory for nmemb instances of size sized elements and sets the allocated memory to
zero.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7.5 ruminate/memory.h File Reference 29

Parameters

in type the type of the memory to allocate
in size the size of the memory to allocate. This must be at least as large as the type

represented by type

in nmemb the number of type sized members to allocate.
out error see errors.h

Returns

a pointer to dynamically allocated memory

7.5.2.3 #define r_mem_malloc(type, error)

Allocate typed memory.

This macro allocates memory of size sizeof(type) and with type type.

This memory must be freed via a call to r_mem_unref().

Parameters

in type the type of the memory to allocate
out error see errors.h

Returns

a pointer to dynamically allocated memory

7.5.2.4 #define r_mem_malloc_sized(type, size, error)

Allocate typed memory with size.

This macro allocates memory of size size and with type type.

This memory must be freed via a call to r_mem_unref().

Parameters

in type the type of the memory to allocate
in size the size of the memory to allocate This must be at least as large as the type

represented by type

out error see errors.h

Returns

a pointer to dynamically allocated memory

7.5.3 Function Documentation

7.5.3.1 void⇤ r_mem_calloc_fn (RType ⇤ type, size_t nmemb, GError ⇤⇤ error)

Allocate zero’ed typed memory.

This is the function version of r_mem_calloc()

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

30 CONTENTS

See Also

r_mem_calloc

Returns

a pointer to dynamically allocated memory

Parameters

in type an RType representing the type of the allocated memory
in nmemb the number of type sized elements to allocate memory for
out error see errors.h

7.5.3.2 void⇤ r_mem_calloc_sized_fn (RType ⇤ type, size_t size, size_t nmemb, GError ⇤⇤ error)

Allocate zero’ed typed memory, with size.

This is the function version of r_mem_calloc_sized()

See Also

r_mem_calloc_sized

Returns

a pointer to dynamically allocated memory

Parameters

in type an RType representing the type of the allocated memory
in size size the size of the memory to allocate. This must be at least as large as the type

represented by type

in nmemb the number of type sized elements to allocate memory for
out error see errors.h

7.5.3.3 void⇤ r_mem_malloc_fn (RType ⇤ type, GError ⇤⇤ error)

Allocate typed memory.

This is the function version of r_mem_malloc()

See Also

r_mem_malloc

Returns

a pointer to dynamically allocated memory

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7.5 ruminate/memory.h File Reference 31

Parameters

in type an RType representing the type of the allocated memory
out error see errors.h

7.5.3.4 void⇤ r_mem_malloc_sized_fn (RType ⇤ type, size_t size, GError ⇤⇤ error)

Allocate typed memory with size.

This is the function version of r_mem_malloc_sized().

See Also

r_mem_malloc_sized

Returns

a pointer to dynamically allocated memory

Parameters

in type an RType representing the type of the allocated memory
in size size the size of the memory to allocate. This must be at least as large as the type

represented by type

out error see errors.h

7.5.3.5 void⇤ r_mem_ref (void ⇤ mem)

Increment the reference count of typed memory.

Returns

mem

Parameters

in mem the memory to increase the reference count of

7.5.3.6 size_t r_mem_size (void ⇤ mem)

Retrieve the allocated size of typed memory.

Returns

the allocated size of mem

Parameters

in mem the typed memory to retrieve the allocated size of

7.5.3.7 RType⇤ r_mem_type (void ⇤ mem)

Retrieve the type of typed memory.

Returns

an RType representing the type of mem.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

32 CONTENTS

Parameters

in mem the memory to retrieve the type of

7.5.3.8 void r_mem_unref (void ⇤ mem)

Decrease the reference count of typed memory.

This function frees mem if the reference count reaches zero.

Parameters

in mem the memory to decrease the reference count of

7.6 ruminate/ruminate.h File Reference

Top-level and utility functions.

Macros

• #define ruminate_get_type(expr, error)

Get the type of an expression.

Functions

• bool ruminate_destroy (GError ⇤⇤error)

De-initialize the ruminate framework.

• bool ruminate_init (const char ⇤program_name, GError ⇤⇤error)

Initialize the ruminate framework.

• RFrameList ⇤ ruminate_backtrace (GError ⇤⇤error)

Generate a backtrace.

• GPtrArray ⇤ ruminate_get_types_by_name (const char ⇤type_name, GError ⇤⇤error)

Retrieve RTypes by name.

• RType ⇤ ruminate_get_type_by_variable_name (const char ⇤, GError ⇤⇤)
• RString ⇤ ruminate_get_function_name (void ⇤addr, GError ⇤⇤error)

Get the name of a function by address.

7.6.1 Detailed Description

Top-level and utility functions.

7.6.2 Macro Definition Documentation

7.6.2.1 #define ruminate_get_type(expr, error)

Get the type of an expression.

Gets an instance of an RType representing the type of the provided expression.

Note that you must first have initialized the ruminate library via a call to ruminate_init().

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7.6 ruminate/ruminate.h File Reference 33

Parameters

in expr The expression to determine the type of.
out error see errors.h

Returns

A pointer to an RType or NULL if an error occurred. This RType must be freed using r_type_unref().

7.6.3 Function Documentation

7.6.3.1 RFrameList⇤ ruminate_backtrace (GError ⇤⇤ error)

Generate a backtrace.

This function generates a backtrace of the caller’s call stack.

Returns

A pointer to an RFrameList representing the frames found in the caller’s call stack. This RFrameList must be freed
using r_frame_list_unref().

Todo This method should return a GPtrArray rather than a custom list implementation.

Parameters

out error see errors.h

7.6.3.2 bool ruminate_destroy (GError ⇤⇤ error)

De-initialize the ruminate framework.

This function frees all internal resources of the ruminate framework. Undefined behavior results if any ruminate frame-
work functions are called after this function returns true.

Returns

Whether or not an error occurred.

Parameters

out error see errors.h

7.6.3.3 RString⇤ ruminate_get_function_name (void ⇤ addr, GError ⇤⇤ error)

Get the name of a function by address.

Returns

A RString containing the name of the function.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

34 CONTENTS

Parameters

in addr the address of the function to get the name of
out error see errors.h

7.6.3.4 RType⇤ ruminate_get_type_by_variable_name (const char ⇤ , GError ⇤⇤)

Todo document

7.6.3.5 GPtrArray⇤ ruminate_get_types_by_name (const char ⇤ type_name, GError ⇤⇤ error)

Retrieve RTypes by name.

This function retrieves all the types which are named type_name.

Returns

A GPtrArray of the types which are named type_name

Parameters

in type_name the name of the types to find
out error see errors.h

7.6.3.6 bool ruminate_init (const char ⇤ program_name, GError ⇤⇤ error)

Initialize the ruminate framework.

This must be called before any other ruminate functions.

The argument program_name must either be the name of this program or NULL. If null, g_get_prgname() will
be called to get the name of this program. If the program name has not been previously set via a call to g_set_-

prgname(), an error will occur.

Returns

Whether or not an error occurred.

See Also

g_set_prgname

Parameters

in program_name the name of this program, e.g. argv[0] or NULL
out error see errors.h

7.7 ruminate.h File Reference

The only file you should need to include.

7.7.1 Detailed Description

The only file you should need to include.

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

7.8 ruminate/type.h File Reference 35

7.8 ruminate/type.h File Reference

The top level of the ruminate type hierarchy.

Enumerations

• enum RTypeId {
R_TYPE_BUILTIN,
R_TYPE_AGGREGATE,
R_TYPE_TYPEDEF,
R_TYPE_POINTER,
R_TYPE_ARRAY,
R_TYPE_UNKNOWN }

An identifier denoting the child type of this RType.

Functions

• size_t r_type_size (RType ⇤, GError ⇤⇤error)

7.8.1 Detailed Description

The top level of the ruminate type hierarchy.

See Also

RType

7.8.2 Enumeration Type Documentation

7.8.2.1 enum RTypeId

An identifier denoting the child type of this RType.

This identifier can be retrieved using r_type_id().

Enumerator

R_TYPE_BUILTIN a builtin type

See Also

RBuiltinType

R_TYPE_AGGREGATE an aggregate type

See Also

RAggregateType

R_TYPE_TYPEDEF a typedef

See Also

RTypedefType

R_TYPE_POINTER a pointer

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

36 CONTENTS

See Also

RPointerType

R_TYPE_ARRAY an array
See Also

RArrayType

R_TYPE_UNKNOWN an unknown type

7.8.3 Function Documentation

7.8.3.1 size_t r_type_size (RType ⇤ , GError ⇤⇤ error)

Todo Document this

7.9 ruminate/type_member.h File Reference

Type members.

Enumerations

• enum RTypeMemberId {
R_TYPE_MEMBER_AGGREGATE,
R_TYPE_MEMBER_ARRAY }

An identifier denoting the child type of this RTypeMember.

7.9.1 Detailed Description

Type members. A RTypeMember represents a member of an array (RArrayType) or aggregate (RAggregateType) type.

See Also

RTypeMember

7.9.2 Enumeration Type Documentation

7.9.2.1 enum RTypeMemberId

An identifier denoting the child type of this RTypeMember.

This identifier can be retrieved using r_type_member_id().

Enumerator

R_TYPE_MEMBER_AGGREGATE a RAggregateMember
See Also

RAggregateMember

R_TYPE_MEMBER_ARRAY an array member

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

Index
aggregate_member.h

R_AGGREGATE_MEMBER_BITFIELD, 24
R_AGGREGATE_MEMBER_ENUM, 24
R_AGGREGATE_MEMBER_OTHER, 24

aggregate_type.h
R_AGGREGATE_TYPE_ENUM, 25
R_AGGREGATE_TYPE_FUNCTION, 25
R_AGGREGATE_TYPE_STRUCT, 25
R_AGGREGATE_TYPE_UNION, 25
R_AGGREGATE_TYPE_UNKNOWN, 25

aggregate_member.h
RAggregateMemberId, 24

aggregate_type.h
RAggregateTypeId, 25

builtin_type.h
R_BUILTIN_TYPE_BOOL, 26
R_BUILTIN_TYPE_CHAR, 26
R_BUILTIN_TYPE_DOUBLE, 26
R_BUILTIN_TYPE_INT, 26
R_BUILTIN_TYPE_LONG, 26
R_BUILTIN_TYPE_SHORT, 26
R_BUILTIN_TYPE_UNKNOWN, 26
R_BUILTIN_TYPE_VOID, 26

builtin_type.h
RBuiltinTypeId, 26

errors.h
RUMINATE_ERROR, 27
RuminateError, 27

memory.h
r_mem_calloc, 28
r_mem_calloc_fn, 29
r_mem_calloc_sized, 28
r_mem_calloc_sized_fn, 30
r_mem_malloc, 29
r_mem_malloc_fn, 30
r_mem_malloc_sized, 29
r_mem_malloc_sized_fn, 31
r_mem_ref, 31
r_mem_size, 31
r_mem_type, 31
r_mem_unref, 32

R_AGGREGATE_MEMBER_BITFIELD
aggregate_member.h, 24

R_AGGREGATE_MEMBER_ENUM
aggregate_member.h, 24

R_AGGREGATE_MEMBER_OTHER
aggregate_member.h, 24

R_AGGREGATE_TYPE_ENUM

aggregate_type.h, 25
R_AGGREGATE_TYPE_FUNCTION

aggregate_type.h, 25
R_AGGREGATE_TYPE_STRUCT

aggregate_type.h, 25
R_AGGREGATE_TYPE_UNION

aggregate_type.h, 25
R_AGGREGATE_TYPE_UNKNOWN

aggregate_type.h, 25
R_BUILTIN_TYPE_BOOL

builtin_type.h, 26
R_BUILTIN_TYPE_CHAR

builtin_type.h, 26
R_BUILTIN_TYPE_DOUBLE

builtin_type.h, 26
R_BUILTIN_TYPE_INT

builtin_type.h, 26
R_BUILTIN_TYPE_LONG

builtin_type.h, 26
R_BUILTIN_TYPE_SHORT

builtin_type.h, 26
R_BUILTIN_TYPE_UNKNOWN

builtin_type.h, 26
R_BUILTIN_TYPE_VOID

builtin_type.h, 26
R_TYPE_AGGREGATE

type.h, 35
R_TYPE_ARRAY

type.h, 36
R_TYPE_BUILTIN

type.h, 35
R_TYPE_MEMBER_AGGREGATE

type_member.h, 36
R_TYPE_MEMBER_ARRAY

type_member.h, 36
R_TYPE_POINTER

type.h, 35
R_TYPE_TYPEDEF

type.h, 35
R_TYPE_UNKNOWN

type.h, 36
r_aggregate_member_id

RAggregateMember, 4
r_aggregate_member_name

RAggregateMember, 5
r_aggregate_type_id

RAggregateType, 6
r_aggregate_type_member_at

RAggregateType, 6
r_aggregate_type_member_by_name

RAggregateType, 6

38 INDEX

r_aggregate_type_nmembers
RAggregateType, 7

r_array_type_member_at
RArrayType, 8

r_array_type_size
RArrayType, 8

r_builtin_type_id
RBuiltinType, 9

r_builtin_type_is_signed
RBuiltinType, 9

r_builtin_type_is_unsigned
RBuiltinType, 9

r_enum_member_value_signed
REnumMember, 10

r_enum_member_value_unsigned
REnumMember, 11

r_frame_compile_unit_name
RFrame, 12

r_frame_function_name
RFrame, 12

r_frame_function_type
RFrame, 12

r_frame_line
RFrame, 12

r_frame_list_at
RFrameList, 14

r_frame_list_ref
RFrameList, 14

r_frame_list_size
RFrameList, 14

r_frame_list_unref
RFrameList, 14

r_frame_module_name
RFrame, 13

r_frame_ref
RFrame, 13

r_frame_unref
RFrame, 13

r_function_type_return_type
RFunctionType, 15

r_mem_calloc
memory.h, 28

r_mem_calloc_fn
memory.h, 29

r_mem_calloc_sized
memory.h, 28

r_mem_calloc_sized_fn
memory.h, 30

r_mem_malloc
memory.h, 29

r_mem_malloc_fn
memory.h, 30

r_mem_malloc_sized
memory.h, 29

r_mem_malloc_sized_fn
memory.h, 31

r_mem_ref
memory.h, 31

r_mem_size
memory.h, 31

r_mem_type
memory.h, 31

r_mem_unref
memory.h, 32

r_pointer_type_pointee
RPointerType, 16

r_string_bytes
RString, 17

r_string_length
RString, 17

r_string_ref
RString, 18

r_string_unref
RString, 18

r_type_id
RType, 19

r_type_member_id
RTypeMember, 22

r_type_member_offset
RTypeMember, 23

r_type_member_ref
RTypeMember, 23

r_type_member_type
RTypeMember, 23

r_type_member_unref
RTypeMember, 23

r_type_name
RType, 19

r_type_pointer
RType, 19

r_type_ref
RType, 20

r_type_size
type.h, 36

r_type_unref
RType, 20

r_typedef_type_canonical
RTypedefType, 21

RAggregateMember, 4
r_aggregate_member_id, 4
r_aggregate_member_name, 5

RAggregateMemberId
aggregate_member.h, 24

RAggregateType, 5
r_aggregate_type_id, 6
r_aggregate_type_member_at, 6
r_aggregate_type_member_by_name, 6
r_aggregate_type_nmembers, 7

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

INDEX 39

RAggregateTypeId
aggregate_type.h, 25

RArrayType, 7
r_array_type_member_at, 8
r_array_type_size, 8

RBuiltinType, 8
r_builtin_type_id, 9
r_builtin_type_is_signed, 9
r_builtin_type_is_unsigned, 9

RBuiltinTypeId
builtin_type.h, 26

REnumMember, 10
r_enum_member_value_signed, 10
r_enum_member_value_unsigned, 11

RFrame, 11
r_frame_compile_unit_name, 12
r_frame_function_name, 12
r_frame_function_type, 12
r_frame_line, 12
r_frame_module_name, 13
r_frame_ref, 13
r_frame_unref, 13

RFrameList, 13
r_frame_list_at, 14
r_frame_list_ref, 14
r_frame_list_size, 14
r_frame_list_unref, 14

RFunctionType, 15
r_function_type_return_type, 15

RPointerType, 16
r_pointer_type_pointee, 16

RString, 17
r_string_bytes, 17
r_string_length, 17
r_string_ref, 18
r_string_unref, 18

RType, 18
r_type_id, 19
r_type_name, 19
r_type_pointer, 19
r_type_ref, 20
r_type_unref, 20

RTypeId
type.h, 35

RTypeMember, 21
r_type_member_id, 22
r_type_member_offset, 23
r_type_member_ref, 23
r_type_member_type, 23
r_type_member_unref, 23

RTypeMemberId
type_member.h, 36

RTypedefType, 20
r_typedef_type_canonical, 21

RUMINATE_ERRNO_ERROR
errors.h, 27

RUMINATE_ERROR
errors.h, 27

ruminate.h, 34
ruminate/aggregate_member.h, 23
ruminate/aggregate_type.h, 24
ruminate/builtin_type.h, 25
ruminate/errors.h, 26
ruminate/memory.h, 27
ruminate/ruminate.h, 32

ruminate_backtrace, 33
ruminate_destroy, 33
ruminate_get_function_name, 33
ruminate_get_type, 32
ruminate_get_type_by_variable_name, 34
ruminate_get_types_by_name, 34
ruminate_init, 34

ruminate/type.h, 35
ruminate/type_member.h, 36
ruminate_backtrace

ruminate/ruminate.h, 33
ruminate_destroy

ruminate/ruminate.h, 33
ruminate_get_function_name

ruminate/ruminate.h, 33
ruminate_get_type

ruminate/ruminate.h, 32
ruminate_get_type_by_variable_name

ruminate/ruminate.h, 34
ruminate_get_types_by_name

ruminate/ruminate.h, 34
ruminate_init

ruminate/ruminate.h, 34
RuminateError

errors.h, 27

type.h
R_TYPE_AGGREGATE, 35
R_TYPE_ARRAY, 36
R_TYPE_BUILTIN, 35
R_TYPE_POINTER, 35
R_TYPE_TYPEDEF, 35
R_TYPE_UNKNOWN, 36

type.h
r_type_size, 36
RTypeId, 35

type_member.h
R_TYPE_MEMBER_AGGREGATE, 36
R_TYPE_MEMBER_ARRAY, 36

type_member.h
RTypeMemberId, 36

Generated on Thu Dec 12 2013 13:15:24 for Ruminate by Doxygen

	Introduction
	Motivation
	Introspection in Current Programming Languages
	Debugging in C
	LLDB

	Related Work
	Ruminate
	Implementation
	Limitations
	Future Work
	Appendix

