
Introspection via Self Debugging
Russell Harmon

reh5586@cs.rit.edu
Rochester Institute of Technology

Computer Science

1 Introduction
The omnipresent support for introspection in modern
programming languages indicates the usefulness of
the tool. [2, 3, 8, 9] Unfortunately, C, which is one of
the most pervasive programming languages and the
foundation of nearly every modern operating system,
does not support introspection.

I propose to bring introspection to the C language
via a novel application of an old tool: the debugger.
Debuggers have long had access to the type and nam-
ing information which is needed for introspection. On
most UNIX platforms, this is accomplished by the
debugger reading any DWARF [4] symbols which may
be present in the target binary. These symbols can
be leveraged to gain the information which is needed
to create a full-featured introspection API.

2 Rationale
One of the motivating factors for any language intro-
ducing introspection as a feature is the following use
case:

You are tasked with changing the save
game format of a popular 1980s style termi-
nal based game from a binary format com-
posed of writing the structs which compose
the game state to disk to a more flexible
JSON format. After investigation, you
discover that in order to do this, you can
use the Jansson [7] C library to produce
JSON. In order to do so, you invoke vari-
ants of the json_object_set function as
given by the following prototype:

int json_object_set(
json_t *object,
const char *key,
json_t *value

);

You notice that json_object_set takes
as parameters the name and value of the
field to be written necessitating the writ-
ing of a separate json_object_set call
for every field of every struct which is to
be written. After considering the literally
thousands of fields across the nearly three

hundred structs in the game you give up
in frustration.

Clearly, it is a significant convenience to developers
to be able to write code which is able to introspect
upon data in a meta-programming style.

3 Introspection in Current Pro-
gramming Languages

Introspection is found in many of the programming
languages commonly used today including Java [8],
Ruby [2], Python [9], Perl [3] and a limited form of
introspection in C++ [13]. The various approaches
to introspection differ in implementation detail; some
receiving introspection as a direct consequence of the
way they implement objects while some provide it as
part of the standard library. Despite this, they all
provide approximately the same set of features. It is by
these features that introspection can be defined, rather
than the details of how the features are implemented.

Two features are generally required in order to be
considered introspection: type and function enumer-
ation. In Java, the availability of type enumeration
means that a program can retrieve the name of an
object and enumerate the fields of that object, retriev-
ing not only their values, but also strings representing
their names and types, including the object’s meth-
ods. Function enumeration can then be performed on
the methods of an object giving access to information
about the return type and argument types, including
the names of the arguments.

Existing attempts to add introspection to C++ fre-
quently require a separate description of the object to
be implemented which is generated using either a sep-
arate parser [11] or using a complementary metadata
object [1] and have the limitation that objects which
come from external libraries cannot be introspected.
Our implementation of introspection will neither have
this library boundary limitation nor require external
tools or additional objects in order to operate.

4 Debugging in C
There already exist a number of tools for interactive
debugging of C programs. Some of the more well

1

reh5586@cs.rit.edu

known ones include GDB [5], WinDBG, Visual Stu-
dio’s debugger and LLDB. [12] Traditionally, these
debuggers have been used interactively via the com-
mand line where more recently debuggers such as the
one embedded within Visual Studio integrate into an
IDE.

An understanding of debugging in general, and
about LLDB specifically are crucial to the understand-
ing of this proposal, so some time will be spent ex-
plaining debugging.

The first step in debugging a program is the cre-
ation of a debuggable binary. This is accomplished by
instructing the compiler to insert debugging symbols,
commonly DWARF on UNIX platforms, into the bi-
nary. Interactive debugging is possible without these
symbols, but becomes difficult.

The DWARF symbols provide LLDB with informa-
tion about the variables and functions in the program
and enables LLDB to determine the line number which
produced a particular sequence of instructions.

4.1 LLDB
Figure 1 on the following page shows a simple de-
bugging session using LLDB. In it, a test program
is launched and the value of a stack-local variable is
printed. Take note that LLDB is aware that the type
of foo.bar is char *. In fact, most debuggers make
available to their users nearly all of the type informa-
tion which is available to the programmer writing the
original source file.

While type information is useful while interactively
debugging a program, the fact that LLDB is able to de-
termine this information while the program is running
suggests that if a program can itself control LLDB, it
could potentially retrieve this type information about
itself.

An important aspect of the type information which
is available to LLDB is that this information is purely
static. The debugger knows only the type of the vari-
able being displayed, rather than the type of the data
itself. This is in stark contrast with other introspec-
tive languages where the type information is carried
with the data and can be recovered without any ad-
ditional context. An example of the result of this is
shown in Fig. 2 on the next page.

5 Related Work
A System for Runtime Type Introspection in C++
[1] discusses an approach to introspection for C++
whereby metadata objects are created using macros
which are expected to be called at the definition of
the object which is to be introspected.

The Seal C++ Reflection System [11] discusses an
introspection system for C++ which uses a metadata
generation tool to create descriptor files which contain
the information needed for introspection.

Reflection for C++ [6] uses an approach very sim-
ilar to the one proposed here, but instead of using a
debugger to retrieve debugging information, it instead
reads the debugging symbols directly. This limits the
API to only leveraging information that it can retrieve
from the debugging symbols themselves, as opposed
to could be retrieved via interactive debugging. This
possibility is discussed in Section 9.

C++, along with all the other languages supported
by Microsoft’s CLR can be reflected upon by leverag-
ing features exposed by the CLR. [10]

6 Approach & Design
By leveraging LLDB, I hope to create an API which
allows a program to read the DWARF symbols of
any object file, shared library or executable; includ-
ing itself. The API which programmers will interact
with should be complete enough that the presence of
LLVM should be completely hidden from the program-
mer. This API should minimally allow introspection
of scalar and pointer values, typedef’ed values, structs,
functions and struct members; allowing access to the
variable, struct member or function name, type name,
size, struct member offset, function arguments and
return type.

LLDB’s API is not designed to require attaching
to a running process in order to retrieve static debug-
ging information which can be determined simply by
examining the symbols in the binary. If information
which is not available statically is needed, a running
instance of the program can be started or attached
to. For the initial implementation of the introspective
API, attaching to the running program should not be
necessary as all the introspective information needed
should be retrievable directly from the executable
file’s debugging symbols. See Section 9 for future
improvements that debugging the running program
could provide.

The code shown in Fig. 4a is a simple example
of a feature which will be enabled by this API. In
Fig. 4a, a struct named foo is introspected upon in
order to produce the output shown in Fig. 4b. Notice
that although the API will not directly provide a
method to access the introspected data’s value, it is
accessible indirectly via the offset and size fields which
are available.

Figure 3 shows a tentative partial API complete
enough for the example mentioned above and shown in

2

Current executable set to ’./a.out’ (x86_64).
(lldb) breakpoint set -n main
Breakpoint created: 1: name = ’main’, locations = 1
(lldb) run
Process 10103 launched: ’./a.out’ (x86_64)
Process 10103 stopped
* thread #1: tid = 0x1c03, 0x0000000100000f60 a.out‘main + 16 at a.c:6

frame #0: 0x0000000100000f60 a.out‘main + 16 at a.c:6
3 };
4 int main() {
5 struct foo foo;

-> 6 foo.bar = "Hello World!";
7 }

(lldb) next
Process 10103 stopped
* thread #1: tid = 0x1c03, 0x0000000100000f64 a.out‘main + 20 at a.c:7

frame #0: 0x0000000100000f64 a.out‘main + 20 at a.c:7
4 int main() {
5 struct foo foo;
6 foo.bar = "Hello World!";

-> 7 }
(lldb) print foo.bar
(char *) $0 = 0x0000000100000f66 "Hello World!"

Figure 1: Interactive Debugging with LLDB

Process 12066 stopped
* thread #1: tid = 0x1c03, 0x0000000100000f64 a.out‘main + 20 at a.c:3

frame #0: 0x0000000100000f64 a.out‘main + 20 at a.c:3
1 int main() {
2 void *baz = "Hello World!";

-> 3 }
(lldb) print baz
(void *) $0 = 0x0000000100000f66

Figure 2: Static Type Information in Debuggers

3

typedef struct {
enum {

TYPE_INT,
TYPE_TYPEDEF,
TYPE_POINTER,
TYPE_STRUCT

} type;
const char *name;
size_t size;

} type_t;

typedef struct {
type_t type;
type_t *real;

} typedef_t;

typedef struct {
type_t type;
type_t *referent;

} pointer_t;

typedef struct {
const char *name;
size_t offset;
const type_t *referent;

} field_t;

typedef struct {
type_t type;
const char *name;
size_t nfields;
const field_t fields[];

} struct_t;

const type_t *get_type(const char *tynam);
void release_type(const type_t *typ);

Figure 3: Tentative Introspective API

Fig. 4 on this page. A program would call get_type
in order to retrieve a type_t whose storage is man-
aged by get_type. This type_t can then be used
to determine information such as the name or size of
the type which it represents by casting the type_t
to the appropriate concrete type as indicated by the
type_t.type field.

6.1 The LLDB API
Currently, LLDB is a relatively new project, and is
only sparsely documented. It does however have ex-
ample code of the use of it’s API. From reading the
sources to LLDB, there exists an SBType class which
represents a type. These types include struct, func-
tion and primitive types. Using a SBType, all the
information needed for a fully featured introspective
API can be retrieved.

typedef char *string_t;
struct foo { string_t str; int i; };
void print_data(const type_t *type, const void *data)
{

switch(type->type) {
case TYPE_TYPEDEF:

assert(strcmp(type->name, "string_t") == 0);
printf("(%s) \"%s\"\n", type->name,

*((const string_t *) data));
break;

case TYPE_INT:
printf("(%s) %d\n", t->name,

*((const int *) data));
break;

case TYPE_STRUCT:
const struct_t *s = (const struct_t *) type;
printf("(%s) {\n", s->name);
for(size_t i = 0; i < s->nfields; i++) {

const field_t *f = &s->fields[i];
printf("\t.%s = ", f->name);
print_data(f->referent, data + f->offset);

}
printf("}\n");
break;

default:
assert(false);

}
}
int main()
{

struct foo bar = {
.str = "Hello World!",
.i = 6666

};
const type_t *t = get_type("struct foo");
print_data(t, &bar);
release_type(t);

}

(a) Introspective code
(foo) {

.str = (string_t) "Hello World!"

.i = (int) 6666
}

(b) Output from introspective code
Figure 4: Introspection Using this API

4

7 Limitations
This style of introspection is slightly more limited
than the classic style of introspection whereby an ob-
ject carries it’s own type information. Instead, the
type of a value must be specified either by the type
of it’s variable, or explicitly by passing a string repre-
sentation of it’s type to the introspective API. The
only limitation this static introspection should impose
on the programmer is that an unknown void ∗ type
cannot be introspected.

Under current plans, the programmer will have to
provide the desired type as a string to the get_type
function. It is however desirable to be able to use any
expression as the argument to get_type. In order
to accomplish this, a running debugger will need to
be attached to the program in order to determine
the result type of the expression. Future work may
provide this feature.

Although not strictly a limitation, many program-
mers will likely want to introspect strings as such,
rather than as the char ∗ type. Unfortunately, since
there is no typing difference between a C string and a
pointer to one or more chars, this introspective API
will be unable to determine the difference between
the two. The example code shown in Fig. 4a on the
previous page works around this issue by creating a
typedef of char ∗ to string_t.

8 Timeline & Completion
Beyond design and implementation of the introspec-
tive API, completion of this project would be mea-
sured by the following criteria: a) code which is similar
in structure to Fig. 4a on the preceding page is able to
produce the output shown in Fig. 4b on the previous
page b) a proof of concept abort_with_stacktrace()
function which when invoked prints a complete stack
trace to standard error and exits and c) the release
of the source code in a usable, fully documented form
on the internet.

The work to create an introspective API is ex-
pected to take approximately three to four months.
This is expected to occur between the months of April
and August.

As shown in Fig. 5 on this page, I expect the actual
programming portion of the project to take until July
and the writing of the thesis to take until August. I
expect to be able to defend by the beginning of the
first academic semester of 2013.

April May June July August

De
ve
lop
me
nt

Pr
oje
ct
Re
po
rt

Figure 5: Completion Timeline

9 Future Work
In order to enable the passing of an expression to
get_type, it should be possible to spawn a debug-
ger control thread, which receives requests from other
threads. These requests would be serviced by attach-
ing to the requesting thread, manipulating the debug-
ger to retrieve the type of the passed in variable, and
finally passing that information back to the requesting
thread. This design is chosen due to the anticipated
limitation in LLVM that you will be unable to attach
to your own thread.

It should be possible to extend this API to operate
with other debuggers (e.x. gdb) possibly even on
other platforms (e.x. windbg on Windows). Currently,
efforts will be focused on features of the introspective
API before portability is considered.

5

References
[1] Maximilien de Bayser and Renato Cerqueira. “A System for Runtime Type Introspection in C++”.

In: Proceedings of the 16th Brazilian conference on Programming Languages. SBLP’12. Natal, Brazil:
Springer-Verlag, 2012, pp. 102–116. isbn: 978-3-642-33181-7. url: http://dx.doi.org/10.1007/
978-3-642-33182-4_9.

[2] Class: Object (Ruby 1.9.3). url: http://ruby-doc.org/core-1.9.3/Object.html#method-i-
instance_variables (visited on 2/19/2013).

[3] Class::MOP::Class. url: http://search.cpan.org/dist/Class-MOP/lib/Class/MOP/Class.pm
(visited on 2/19/2013).

[4] DWARF Standards Committee. The DWARF Debugging Standard. url: http://dwarfstd.org/
(visited on 10/20/2012).

[5] GDB: The GNU Project Debugger. url: https://www.gnu.org/software/gdb/ (visited on
2/19/2013).

[6] K. Knizhnik. Reflection for C++. url: http://www.garret.ru/cppreflection/docs/reflect.
html (visited on 2/19/2013).

[7] Petri Lehtinen. Jansson. url: http://www.digip.org/jansson/ (visited on 2/7/2013).

[8] Package java.lang.reflect. url: http://docs.oracle.com/javase/7/docs/api/java/lang/
reflect/package-summary.html (visited on 2/19/2013).

[9] Python 2.7.3 » Documentation » The Python Standard Library. Built-in Functions. url: http:
//docs.python.org/2/library/functions.html#dir (visited on 2/19/2013).

[10] Reflection in C++. url: http://msdn.microsoft.com/en-us/library/y0114hz2(v=vs.80).aspx
(visited on 2/19/2013).

[11] S. Roiser and P. Mato. “The Seal C++ Reflection System”. In: Proceedings of CHEP 2004. CHEP04
(Sept. 27–Oct. 1, 2004). CERN. Interlaken, Switzerland, 2004. url: http://indico.cern.ch/
getFile.py/access?contribId=222&resId=0&materialId=paper&confId=0 (visited on 2/19/2013).

[12] LLVM Team. The LLDB Debugger. url: http://lldb.llvm.org/ (visited on 10/11/2012).

[13] “Working Draft, Standard for Programming Language C++”. In: ISO/IEC 14882:2011 (2011), 99,
§5.2.8.

6

http://dx.doi.org/10.1007/978-3-642-33182-4_9
http://dx.doi.org/10.1007/978-3-642-33182-4_9
http://ruby-doc.org/core-1.9.3/Object.html#method-i-instance_variables
http://ruby-doc.org/core-1.9.3/Object.html#method-i-instance_variables
http://search.cpan.org/dist/Class-MOP/lib/Class/MOP/Class.pm
http://dwarfstd.org/
https://www.gnu.org/software/gdb/
http://www.garret.ru/cppreflection/docs/reflect.html
http://www.garret.ru/cppreflection/docs/reflect.html
http://www.digip.org/jansson/
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html
http://docs.python.org/2/library/functions.html#dir
http://docs.python.org/2/library/functions.html#dir
http://msdn.microsoft.com/en-us/library/y0114hz2(v=vs.80).aspx
http://indico.cern.ch/getFile.py/access?contribId=222&resId=0&materialId=paper&confId=0
http://indico.cern.ch/getFile.py/access?contribId=222&resId=0&materialId=paper&confId=0
http://lldb.llvm.org/

	Introduction
	Rationale
	Introspection in Current Programming Languages
	Debugging in C
	LLDB

	Related Work
	Approach & Design
	The LLDB API

	Limitations
	Timeline & Completion
	Future Work

